ผมเห็นว่าวันนี้ทุกคนต่างก็พูดเรื่อง Big Data ตั้งแต่คนไอทีไปจนถึงนายกรัฐมนตรี ต่างก็บอกว่าจะเอา Big Data  มาใช้ในองค์กร บ้างก็บอกว่าทำแล้วบ้างก็บอกว่ากำลังทำ บางคนทำรายงานอะไรเล็กน้อยก็บอกว่าทำ Big Data อยู่ ซึ่งผมก็ไม่แน่ใจว่าแต่ละคนเข้าใจความหมายของ Big Data แค่ไหน แต่ไม่ว่าจะมองนิยาม  Big Data อย่างไรก็ตามผมมองว่า Big Data มีเป้าหมายสำหรับองค์กรในสามประเด็นดังนี้

  1. การนำข้อมูลขนาดใหญ่มาช่วยในการตัดสินใจได้ดีขึ้น เช่นสามารถตอบได้ว่าเราควรจะทำอะไร นำสินค้าใดมาขาย ลูกค้าเราอยู่ที่ใด จะใช้จ่ายงบประมาณอย่างไร
  2. การนำข้อมูลขนาดใหญ่มาช่วยให้การทำงานดีขึ้น เช่นทราบข้อมูลโดยทันทีว่าลูกค้าต้องการอะไร ทราบตำแหน่งของลูกค้าเป้าหมาย หรือช่วยเพิ่มยอดขาย จะใช้งบประมาณให้มีประสิทธิภาพอย่างไร
  3. การทำให้ข้อมูลเป็นทรัพย์สินขององค์กร และทำให้เกิด Business Transformation เช่นการนำข้อมูลที่มีอยู่ไปต่อยอดร่วมกับคู่ค้ารายอื่นๆเพื่อสร้างสินค้าใหม่ๆ

การทำ  Big Data ไม่ใข่แค่เรื่องของการทำ  Data Cleansing, Data Warehouse, Business Intelligence หรื่อเรื่องของเทคโนโลยี องค์กรที่จะทำ Big Data อาจต้องเปลี่ยนทัศนคติในรูปแบบเดิมๆอยู่หลายเรื่อง ซึ่งผมมักจะยกคำพูดสั้นมา 3-4  ประโยคเกี่ยวกับ Big Data  ดังนี้

  • Don’t think technology, think business transformation.
  • Don’t think data warehouse, think data lake.
  • Don’t think business intelligence, think data science.
  • Don’t think “what happened”, think “what will happen”.

สุดท้ายต้องทำความเข้าใจเรื่องระดับความสามารถของการนำ Big Data ไปใช้ในองค์กร (Big Data Matuarity Model)  ว่ามีอยู่ 5 ระดับดังรูปนี้ ซึ่งจะบอกได้ว่าองค์กรของเราอยู่ในระดับใด

Screenshot 2017-09-01 11.46.57

รูปที่ 1 Big Data Business Model Maturity Index, จาก Big Data MBA, Bernard Marr

  1. Business Monitoring ในขั้นตอนนี้องค์กรยังเพียงแค่ทำ Business Intelligence หรือยังทำ Data Warehouse ซึ่งเป็นขั้นตอนที่เราจะแสดงข้อมูลหรือทำรายงานต่างๆขององค์กรในลักษณะของ Descriptive Analytic ที่เราจะดูข้อมูลในอดีตเพื่อให้ทราบว่า What happened?
  2. Business Insights  ในขั้นตอนนี้จะเป็นการเริ่มต้นทำ Big Data Project ที่มีการทำ  Data Lake เพื่อรวบรวมข้อมูลจากทั้งภายในและภายนอกองค์กรทั้งข้อมูลที่เป็น structure, unstructure  หรือ semi-structure เพื่อทำ Predictive Analytic  เพื่อให้ทราบว่า What will happen?
  3. Business Optimization ในขั้นตอนนี้จะเริ่มเห็นความคุ้มค่าของการลงทุนทำ Big Data Project โดยจะเป็นการทำ Prescriptive Analytic เพื่อให้ทราบว่า How should we make in happen?
  4. Data Monetization ในขั้นตอนนี้จะเป็นการขยายผลเพื่อนำ Data ที่จะเป็นทรัพยากรขององค์กรไปใช้เป็นสินทรัพย์ในการทำงานร่วมกับคู่ค้าหรือองค์กรอื่นๆ
  5. Business Metamorphosis ในขั้นตอนนี้จะเป็นขั้นสูงสุดของการทำ Big Data ที่จะเห็นเรื่องของ Business Transformation  ในองค์กรซึ่งอาจเห็นรูปแบบการทำงานใหม่ๆ ธุรกิจใหม่ หรื่อผลิตภัณฑ์ใหม่ๆขององค์กร

จากที่กล่าวมาทั้งหมดนี้จะเห็นได้ว่า การทำ Big Data Project  ไม่ใช่เรื่องง่ายๆอย่างที่เข้าใจ จำเป็นต้องปรับวิธีคิดในองค์กรอย่างมาก และต้องเข้าใจเป้าหมายและระดับขั้นของการทำ Big Data ในองค์กร

ธนชาติ นุ่มนนท์

IMC Institute

พฤศจิกายน 2560

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out /  เปลี่ยนแปลง )

Connecting to %s