เอไอต่อไปเป็นเรื่องง่ายนิดเดียว ใครๆก็ทำได้

ผมเริ่มจับเรื่องของเอไอ (ปัญญาประดิษฐ์) ครั้งแรกเมื่อสามสิบกว่าก่อน จริงๆตอนนั้นก็ไม่ทราบหรอกครับว่าทำเรื่องเอไอหรือไม่ แต่ใช้อัลกอริทึมมาพยากรณ์ข้อมูลการผลิตไฟฟ้าในอนาคตโดยทำเรื่องของ Genetic Algorithm สมัยนั้นการพัฒนาเอไอเป็นเรื่องยาก ต้องเข้าใจเรื่องของคณิตศาสตร์ ต้องสามารถเขียนโปรแกรมได้ เข้าใจโจทย์ที่ต้องทำเป็นอย่างดี และสำคัญคือต้องมีทรัพยากรคอมพิวเตอร์ขนาดใหญ่

การพัฒนาด้านเอไอในช่วงแรกเป็นไปอย่างค่อยเป็นค่อยไป จนกระทั่งเมื่อ 3-4 ปีที่ผ่านมา เอไอเริ่มเข้ามาอยู่ในชีวิตประจำวันของผู้คนมากขึ้นจนกลายเป็น New Normal อาทิเช่น คนใช้ Faical Recognition ในการเปิดมือถือหรือจ่ายเงิน เจอระบบ Recommendation ในการแนะนำสินค้าหรือภาพยนตร์ ใช้ Google Map ในการคาดการณ์เส้นทางและระยะเวลาในการเดินทาง

ผู้คนสนใจในเรื่องของเอไอมากขึ้น จากศาสตร์ที่เป็นเรื่องของนักวิทยาศาสตร์หรือนักไอทีก็กลายเป็นเรื่องของคนทุกคน คนจำนวนมากอยากมีความเข้าใจเรื่องเอไอให้ความสนใจเรื่องของหุ่นยนต์ ระบบอัตโนมัติต่างๆ รวมถึงการทำวิทยาศาสตร์ข้อมูล เริ่มมีการพูดถึงทักษะการทำงานที่จะเปลี่ยนไปโดยในอนาคตจะมีระบบเอไอเข้ามาช่วยในการทำงานมากขึ้น หรืองานบางอย่างอาจถูกทดแทนด้วยระบบอัตโนมัติ ดังนั้นคนทุกคนควรจะเข้าใจเรื่องเอไอเพื่อทีจะได้เตรียมความพร้อมในการทำงานและการใช้ชีวิตประจำวันที่ต้องอยู่กับระบบเอไอที่กำลังเข้ามามากขึ้นเรื่อยๆ

ด้านการพัฒนาระบบเอไอก็มีการเรียนการสอนมากขึ้น บ้างก็สอนเขียนโปรแกรม บ้างก็สอนการพัฒนาโมเดล บ้างก็สอนการใช้ข้อมูล มีสาขาใหม่เกิดขึ้นมากมายทางด้านเอไอหาวิทยาลัย ทั้งหลักสูตรระดับปริญญาและหลักสูตรระยะสั้น

บางคนยังมองว่าการพัฒนาเอไอเป็นเรื่องยากต้องเขียนโปรแกรมเมื่อในยุคเดิม ซึ่งแท้จริงแล้วการพัฒนาโมเดลเอไอในวันนี้เป็นเรื่องง่ายนิดเดียว มีเครื่องมือแบบอัตโนมัติเช่น AutoML ที่ใช้เอไอมาพัฒนาโมเดลเอไอโดยไม่ต้องเขียนโค้ด และโจทย์ยากๆที่มีข้อมูลขนาดใหญ่ก็สามารถทำได้โดยใช้ระบบบนคลาวด์ ทำให้ในปัจจุบันใครๆก็พัฒนาเอไอได้

ดังนั้นเพื่อเตรียมเข้าสู่อุตสาหกรรม 4.0 ที่กลายเป็นโลกของเอไอ เราจำเป็นต้องเร่งพัฒนาคนทุกคนเพื่อให้เข้าใจและสามารถพัฒนาระบบเอไอได้ โดยเราอาจแบ่งการพัฒนาคนออกเป็น 4 กลุ่มดังนี้

  • กลุ่มประชาชนทั่วไป ควรจะต้องสอนหลักสูตรเอไอสำหรับคนทุกคน ให้เข้าใจถึงเรื่องของเอไอ การนำระบบเอไอไปใช้ในชีวิตประจำวัน ผลกระทบของเอไอต่อการเปลี่ยนแปลงของโลก ควรมีหลักสูตรเอไอเบื้องต้นให้กับนักเรียนทุกคนตั้งแต่ชั้นประถม คนทำงานจำเป็นต้องเข้าใจการนำระบบเอไอเพื่อมาเพิ่มประสิทธิภาพในการทำงาน และผู้บริหารจำเป็นต้องเข้าใจการวางแผนกลยุทธ์ขององค์กรที่จะนำเอไอมาประยุกต์ใช้
  • คนทำงานทั่วไปสำหรับพัฒนาระบบเอไอ กลุ่มผู้ประกอบอาชีพต่างๆ ที่มีความเข้าใจศาสตร์ในแต่ละด้านของตัวเองจำเป็นจะต้องศึกษาการพัฒนาระบบเอไอเอง ทั้งนี้เนื่องเครื่องมือจะง่ายขึ้นเรื่อยๆ ต่อไปคนทำงานที่มี domain expert ด้านนั่นๆสามารถทำได้เอง อาทิเช่น หมอสามารถพัฒนาระบบเอไอด้านการแพทย์ นักกฎหมายก็สามารถพัฒนาระบบ NLP เรื่องข้อกฎหมาย นักเศรษฐศาสต์สามารถพัฒนาระบบเอไอเพื่อพยากรณ์ข้อมูลเศษฐกิจเป็นต้น กลุ่มคนทำงานเหล่านี้จะเป็น Citizen Data Scientist และ Citizen AI Developer ที่เป็นกำลังพัฒนาประเทศในอนาคต
  • กลุ่มนักพัฒนาไอทีและวิศวกร กลุ่มคนเหล่านี้อาจช่วยในการพัฒนาซอฟต์แวร์ และระบบไอทีเพื่อใช้ในการพัฒนาเอไอ เช่นการพัฒนาระบบหุ่นยนต์ ระบบซอฟต์แวร์อัตโนมัติต่างๆ ซึ่งอาจมีความเชี่ยวชาญในการเขียนโปรแกรมต่างๆเช่นการใช้ Library ต่างๆเช่นการเขียน TensorFlow ซึ่งจริงๆแล้วคนกลุ่มนี้หากขาดความรู้ทางคณิตศาสตร์ที่ดีพอก็อาจไม่สามารถสู้คนทำงานทั่วไปที่มี domain expert ไดเ เพราะต่อไปเครื่องมือในการพัฒนาเอไอจะง่ายขึ้นมากเหมือนที่เราใช้โปรแกรมออฟฟิศทุกวันนี้ ดังนั้นการที่เราเอาคนที่เข้าใจอุตสาหกรรมมาทำระบบเอไอย่อมจะดีกว่าเอานักไอทีที่เป็นเพียงแค่เขียนหรือใช้โปรแกรมได้มาพัฒนาระบบเดียวกันถ้าคนนั้นไม่เข้าใจทฤษฎีหรือคณิตศาสตร์ของเอไอ
  • ผู้เชี่ยวชาญด้านเอไอ การทำโมเดลเอไอที่ซับซ้อน หรือการศึกษาทฤษฎีเอไอยังมีความจำเป็นอยู่ แต่ต้องมีความเข้าใจคณิตศาสตร์และทฤษฎีด้านเอไอที่ดีครับ ไม่ใช่แค่มาเขียนโปรแกรมแบบเดิม ดังนั้นการสอนวิทยาศาสตร์ข้อมูล (Data science) และ เอไอ ต้องเน้นการเรียนคณิตศาสตร์ และอาจต้องส่งเสริมให้มีการวิจัยระดับสูง เพราะในอนาคตเราต้องการคนที่มีความรู้ทฤษฎีเหล่านั้นอย่างลึกซึ้ง ประเทศไทยถึงจะแข่งขันได้

ดังนั้นเพื่อให้ประเทศเราแข่งขันได้ เราจำเป็นจะต้องเอาหลักสูตรเอไอเข้ามาใส่ในการศึกษาทุกระดับ ทุกคณะและทุกสาขาวิชาควรมีการสอนการพัฒนาเอไอ ส่วนหลักสูตรที่เป็นด้านเอไอหรือวิทยาศาสตร์ข้อมูลจะต้องเร่งพัฒนาผู้เชี่ยวชาญจริงๆ ต้องเน้นวิชาด้านคณิตศาสตร์มากๆแม้แต่ในระดับปริญญาตรีก็ควรที่จะต้องเรียนคณิตศาสตร์เป็น 10 วิชา ถ้าหลักสูตรเรียนเพียงเพื่อเขียนโปรแกรมหรือใช้เครื่องมือในการพัฒนาระบบเอไอหรือวิเคราะห์ข้อมูล ก็ควรที่จะมุ่งพัฒนา Citizen Data Scientist และ Citizen AI Developer มากกว่า

ธนชาติ นุ่มนนท์

IMC Institute

————–


หมายเหตุ

ทั้งนี้ทางสถาบันไอเอ็มซี จะจัดงาน Free Webinar #31: “AI in Practice: The Series (4 EPs)”
AI ในปัจจุบันเป็นเรื่องง่ายขึ้น ใครๆก็ทำได้ ร่วมรับฟังการบรรยายผ่านระบบ Zoom และรับชมการสาธิตการใช้โปรแกรมจริง


👨‍🏫บรรยายโดย: รศ.ดร.ธนชาติ นุ่มนนท์
ผู้อำนวยการสถาบันไอเอ็มซี


🎯ทุกวันพุธ เวลา 19:30-21:30 น. เริ่มวันพุธที่ 25 พ.ย. 2563
🔗สามารถลงทะเบียนเข้าร่วมแต่ละ EP ได้ตาม Link ด้านล่างนี้👇
EP #1 : https://tinyurl.com/y3peswuk
EP #2 : https://tinyurl.com/y6xuy4kr
EP #3 : https://tinyurl.com/y2pmmzjc
EP #4 : https://tinyurl.com/y6gl76ze


ดูรายละเอียดเพิ่มเติม 👉 https://bit.ly/3pnzWja
📣ฟรี! ไม่เสียค่าใช้จ่าย เข้ารับฟังผ่านระบบ Zoom

สอบถามข้อมูลเพิ่มเติม

📞 โทร : 02-233-4732, 088-192-7975
📧 อีเมล : contact@imcinstitute.com
🖥 หรือ Inbox เข้ามาได้ที่เพจ IMC Institute

การกำหนดกลยุทธ์ดิจิทัล 4 ด้านให้สอดคล้องกับ Gartner Strategic Technology Trends 2021

หลายคนอาจสงสัยว่าเราจะต้องวางแผนแนวทางด้านเทคโนโลยีขององค์กรเราอย่างไร เพื่อให้สอดคล้องกับ Strategic Technology Trends 2021 ของ Gartner ที่ประกาศออกมาเมื่อเร็วๆนี้ โดยได้ระบุถึงเทคโนโลยีต่างๆ 9  ด้านคือ

  • Internet of Behaviours 
  • Total experience
  • Privacy-enhancing computation
  • Distributed cloud 
  • Anywhere operation
  • Cybersecurity mesh
  • Intelligent composable business
  • AI engineering
  • Hyperautomation

(ดูรายละเอียดเพิ่มเติมได้จากบทความ Gartner Strategic Technology Trends 2021 พูดถึงเรื่องอะไรบ้าง)

แนวโน้มเทคโนโลยีเหล่านี้ส่วนหนึ่งเป็นผลที่มาจากการเกิดวิกฤติโควิดที่ทำให้เกิดเรื่องของการสร้างระยะห่างทางสังคม สังคมเข้าสู่เทคโนโลยีดิจิทัลมากขึ้น และการเกิด Digital disruption มาเร็วขึ้น ทำให้การใช้ชีวิตส่วนตัวและทำงานเป็นแบบรีโมทมากขึ้น ธุรกิจจะต้องมีความคล่องตัวและปรับเปลี่ยนได้อย่างรวดเร็ว และมีความจำเป็นจะต้องทำการวิเคราะห์ข้อมูลและนำเรื่องปัญญาประดิษฐ์ (เอไอ)มาใช่ในองค์กรมากขึ้น

จาก Gartner ทำให้ผู้บริหารองค์กรต้องคำนึงถึงกลยุทธ์ดิจิทัลอยู่หลายด้านอาทิเช่น

  • การออกแบบสถาปัตยกรรมไอทีแบบกระจาย (Distributed architecture)
  • กำหนดกลยุทธ์ในการเก็บและวิเคราะห์ข้อมูลพฤติกรรมลูกค้า
  • การตั้งทีมงานด้านเอไอแภายในองค์กร
  • กลยุทธ์ด้านเทคโนโลยีที่จะให้บริการลูกค้าและปรับวิธีการทำงานของพนักงานเป็นแบบที่ใดก็ได้ (location independent)

กลยุทธ์สถาปัตยกรรมไอทีแบบกระจาย

เพื่อให้เราสามารถปรับเปลี่ยนบริการไอทีและดิจิทัลให้รวดเร็วและมีความคล่องตัว ระบบไอทีในองค์กรคงต้องใช้บริการของ public cloud มากขึ้น และอาจต้องเน้นใช้บริการของผู้ให้ที่มี Distributed cloud ขณะเดียวกันการออกแบบระบบไอทีก็จะต้องเน้นเป็น Microservices ที่เป็นmodularity มากขึ้น เพื่อที่จะประกอบแอปพลิเคชั่นหรือบริการใหม่ได้อย่างรวดเร็วให้สอดคล้องกับแนวโน้มในเรื่องของ Intelligent composable business นอกจากนี้ในแง่ของการออกแบบระบบความปลอดภัยคงต้องเน้นว่า การใช้บริการไอทีอาจมาจากภายนอกองค์กรมากขึ้น ดังนั้นรัศมีการควบคุมก็อาจถูกกำหนดตามแนวโน้มของ Cybersecurity mesh

กลยุทธ์ด้าน Big Data

องค์กรจำเป็นจะต้องมีกลยุทธ์ในการเก็บข้อมูลลูกค้าให้มากที่สุดเท่าที่ทำได้ โดยเฉพาะเรื่องของพฤติกรรมลูกค้า ซึ่งอาจต้องมีการติดตั้งระบบเซ็นเซอร์ เก็บข้อมูล CRM หรือโซเชียลมีเดีย เพื่อให้ได้มาซึ่ง Internet of  Behaviours ของลูกค้า จากนั้นต้องมั่นใจว่าการนำข้อมูลต่างไปประมวลผลมีความเป็นส่วนตัวที่เข้ารหัส และกระจายไปพันธมิตรที่เกี่ยวข้องโดยเป็นไปตามแนวโน้มด้าน Privacy-enhancing computation ซึ่งการวิเคระห์ข้อมูลเหล่านี้จะนำมาซึ่งประสบการณ์โดยรวม (Total experience) ที่ดีขึ้นสำหรับทุกฝ่าย

กลยุทธ์ด้านเอไอ

องค์กรจะต้องมีการกำหนดกลยุทธ์ทางด้านเอไอ บริการและผลิตภัณฑ์ขององค์กรจะต้องมีระบบเอไอฝังอยู่ กระบวนการทำงานต่างขององค์กรจะต้องถูกปรับให้เป็นแบบอัตโนมัติในลักษณะที่สามารถทำงานเชื่อมโยงกันในแต่ละระบบได้ เพื่อให้สอดคล้องกับแนวโน้มด้าน Hyperautomation และการพัฒนาระบบไอทีจะต้องมีแนวปฎิบัติเรื่องของ AI engineering ตั้งแต่การทำ DevOp

กลยุทธ์การให้บริการลูกค้า

องค์กรต้องออกแบบแอปพลิเคชั่นทั้งทางด้านการให้บริการลูกค้า การทำงานของพนักงานให้เป็นแบบ Anywhere Anydevice และ Anytime เพื่อให้สอดคล้องกับแนวโน้มของสังคมที่เปลี่ยนไปสู่ Anywhere operation และต้องเน้นการนำเอไอและการวิเคราะห์ข้อมูลมาใช้เพื่อให้เกิด Total experience ด้วย

ทั้งหมดนี้คือสิ่งที่อยากจะแนะนำให้ผู้บริหารวางแผนในการปรับตัวสู่การทำ Digital transformation ที่สอดคล้องกับแนวโน้มของ Gartner

ธนชาติ นุ่มนนท์

IMC Institute

Gartner Strategic Technology Trends 2021 พูดถึงเรื่องอะไรบ้าง

Gartner ได้ประกาศ Strategic Technology Trends 2021 ออกมาเมื่อเร็วๆนี้ ทั้งนี้ในปีนี้ได้เห็นการเปลี่ยนแปลงในหลายๆด้านเนื่องจากสถานการณ์โควิด-19 ที่ทำให้สังคมโลกเปลี่ยนแปลงไป ทั้งในแง่ของวิธีการทำงานและการใช้ชีวิตของผู้คนจากการที่จะต้องสร้างระยะห่างทางสังคม (Social distancing) และน่าจะมีผลต่อเนื่องในระยะยาวที่จะทำให้พฤติกรรมของผู้คนเปลี่ยนแปลง จึงทำให้ Gartnerแบ่งแนวโน้มด้านเทคโนโลยีปีนี้ไว้เป็นสามกลุ่มคือ

  • ด้าน People centricity ซึ่งถึงแม้ว่าโควิด-19 จะทำให้การทำงานและการใช้ชีวิตประจำวันของผู้คนเปลี่ยนแปลงไป แต่คนก็ยังเป็นศูนย์กลางของธุรกิจที่จำเป็นจะต้องทำให้กระบวนการทำงานต่างๆถูกแปลงเข้าสู่ระบบดิจิทัลอย่างเต็มรูปแบบ
  • ด้าน Location independence โควิด-19 ทำให้เกิดสังคมที่ไม่ขึ้นอยู่กับสถานที่แบบเดิม ทำงาน เรียนหรือใช้ชีวิตประจำวันที่ไหนก็ได้ จึงจำเป็นจะต้องมีเทคโนโลยีที่จะมาสนับสนุนพฤติกรรมรูปแบบใหม่ๆ
  • ด้าน Resilient delivery วิกฤติโควิด-19และการถดถอยทางเศรษฐกิจ ทำให้ธุรกิจจำเป็นที่จะต้องปรับตัวและมีความคล่องตัว จึงต้องมีการเตรียมเทคโนโลยีที่สามารถมารองรับการเปลี่ยนแปลงที่จะเกิดขึ้นจากกระแส Digital disruption

ทั้งนี้ในปีนี้ Gartner ประกาศแนวโน้มเทคโนโลยีออกมาเพียง 9 อย่าง ซึ่งแตกต่างจากปีก่อนๆที่ปกติจะมี 10 อย่าง โดยมีเทคโนโลยีดังนี้

ด้าน People centricity

  • Internet of Behaviours เทคโนโลยีดิจิทัลทำให้สามารถเก็บข้อมูลของผู้คนได้มากขึ้น ทั้งข้อมูลของลูกค้าในเชิงธุรกิจและข้อมูลของประชาชนสำหรับภาครัฐ ซึ่งข้อมูลเหล่านี้อาจมาจากโซเชียลมีเดีย Internet of things หรือมือถือ ทำให้สามารถเข้าใจพฤติกรรมผู้คนได้มากขึ้น และอาจนำมาใช้งานในด้านต่างๆได้ดีขึ้นทั้งเรื่องของการให้บริการลูกค้า หรือการควบคุมการเกิดโรคระบาด เช่นการตรวจสอบว่ามีการใส่หน้ากากหรือไม่จากกล้องอัจฉริยะ หรือได้ล้างมือหรือยังจากระบบเซ็นเซอร์ของก็อกน้ำ ตลอดจนการมีระบบติดตามผู้คนทำให้ทราบพฤติกรรมของผู้คนได้มากขึ้น
  • Total experience คือการรวบรวมประสบการณ์ที่หลากหลายทั้งจาก ประสบการณ์ของลูกค้า (customer experience) ประสบการณ์ของพนักงาน (employee experience) และประสบการณ์ของผู้ใช้ (user experience) มาเพื่อเปลี่ยนแปลงให้ได้ผลลัพธ์ทางธุรกิจที่ดีขึ้น ตัวอย่างเช่นในช่วงโควิด-19 มีบริษัทด้านโทรคมนาคมแห่งหนึ่งได้ติดตั้งระบบนัดหมายผ่านโมบายแอป และเมื่อลูกค้ามาตามเวลานัดหมายพอใกล้ถึงสถานที่ก็จะสามารถเช็คอินได้อัตโนมัติ และสังข้อความไปแจ้งพนักงานที่อาจใช้แทปเล็ตเพื่อให้บริการและโต้ตอบกับลูกค้าแบบทันทีทันใด ซึ่งจะช่วยลดเรื่อง Social distancing และทำให้ประสบการณ์ของลูกค้าและพนักงานโดยรวมดีขึ้น
  • Privacy-enhancing computation คือการใช้เทคโนโลยีเพื่อจะประมวลผลข้อมูลได้อย่างปลอดภัย โดยประกอบไปด้วยเทคโนโลยีสามด้านคือ 1) การทำระบบและสภาพแวดล้อมที่สามารถประมวลและวิเคราะห์ข้อมูลได้อย่างปลอดภัย 2) การทำให้สามารถประมวลผลและวิเคราะห์ข้อมูลแบบกระจายไปหลายที่ได้ และ 3) การเข้ารหัสข้อมูลและอัลกอริทึมก่อนที่นำไปประมวลผลและวิเคราะห์ ซึ่งด้วยเทคโนโลยีเหล่านี้จะทำให้สามารถมั่นใจได้ว่าข้อมูลส่วนบุคคลถูกนำไปประมวลผลข้ามองค์กรได้ด้วยความปลอดภัย

ด้าน Location independence

  • Distributed cloud คือการที่ผู้ให้บริการ public cloud กระจายการติดตั้งระบบ cloud ไว้ในหลายๆแห่งโดยที่การบริหารจัดการบริการและการควบคุมต่างๆยังเป็นหน้าที่ของผู้ให้บริการ public cloud จึงทำให้องค์กรต่างๆได้ Cloud services ที่ทันสมัย และมีระบบที่ตั้งอยู่ตำแหน่งใกล้กับหน่วยงานเพื่อเพิ่มความรวดเร็วในการส่งข้อมูล และตอบโจทย์ขององค์กรที่ต้องการให้ข้อมูลไม่ย้ายออกไปอยู่ในดำแหน่งไกลๆโดยเฉพาะในต่างประเทศ ทั้งนี้มีการกล่าวว่า Distributed cloud คืออนาคตของ Cloud
  • Anywhere operation คือรูปแบบของธุรกิจที่จะให้บริการลูกค้าจากที่ใดก็ได้และพนักงานทำงานจากที่ใดก็ได้ผ่านเทคโนโลยีดิจิทัล ซึ่งต้องมีแนวคิดที่มองดิจิทัลต้องมาก่อนโดยไม่คำนึงถึงตำแหน่งที่ตั้ง (Digital first, location independent) โดยมีโครงสร้างพื้นฐานไอทีและแอปพลิเคชั่นแบบกระจาย
  • Cybersecurity mesh คือสถาปัตยกรรมแบบกระจาย (Distributed architecture) ที่จะสามารถควบคุมความปลอดภัยทางไซเปอร์ได้อย่างมั่นใจ ยืดหยุ่น และขยายตัวได้ ทั้งนี้เนื่องจากทรัพยากรด้านไอทีจำนวนมากอยู่นอกรัศมีการควบคุมความปลอดภัยที่มักจะกำหนดไว้ภายในองค์กร Cybersecurity mesh จะเป็นการอนุญาตให้ผู้ใช้กำหนดรัศมีการควบคุมความปลอดภัยโดยพิจารณาจากการระบุตัวตน หรือตำแหน่งของผู้ใช้ จึงทำให้สามารถใช้ระบบความปลอดภัยในรูปแบบโมดูลาร์และตอบสนองได้ โดยมีนโยบายจากส่วนกลาง

ด้าน Resilient delivery

  • Intelligent composable business องค์กรต่างๆจำเป็นจะปรับตัวอยู่ตลอดเวลาในโลกที่กำลังเปลี่ยงแปลงไป จึงจำเป็นต้องมีสถาปัตยกรรมเทคโนโลยีที่สามารถเข้าถึงข้อมูลต่างๆได้ดีขึ้นและสามารถที่จะเสริมข้อมูลเหล่าให้เห็นในเชิงลึกได้ ตลอดจนประกอบข้อมูลในแต่ละส่วนย่อยหรือแอปพลิเคชั่นได้ เพื่อที่จะมาพัฒนาระบบต่างๆที่สามารถรองรับการเปลี่ยนแปลงได้ ตัวอย่างเช่นธนาคารอาจจะต้องสามารถที่จะพยากรณ์แนวโน้มและพฤติกรรมของลูกค้าแล้วสามารถสร้างบริการใหม่ๆได้อย่างรวดเร็ว โดยอาจเป็นการพัฒนาแอปพลิเคชั่นจากระบบเดิมที่มีอยู่จากการจัดเรียงระบบขึ้นมาใหม่แทนที่จะต้องพัฒนาระบบใหม่ทั้งหมด
  • AI engineering คือการแก้ปัญหาโครงการด้านเอไอที่มักจะเจอในแง่ของการบำรุงรักษา การขยายระบบ และด้านธรรมาภิบาล โดยการให้การทำเอไอเป็นส่วนหนึ่งของกระบวนการพัฒนาและการทำงานโครงการไอทีต่างๆแทนที่จะมองเป็นโปรเจ็คด้านเอไอโดยเฉพาะ ซึ่งจะต้องมีขั้นตอนการทำงานที่ชัดเจนเป็นเป็นตามหลักธรรมภิบาล โดยต้องคำนึงในเรื่องของความน่าเชื่อถือ ความโปร่งใส จริยธรรม การสามารถอธิบายได้ และเป็นไปตามกฎปฎิบัติต่างๆ
  • Hyperautomation คือ แนวคิดที่จะต้องทำให้กระบวนการทำงานต่างๆทั้งทางด้านธุรกิจและไอทีเป็นระบบอัตโนมัติให้มากที่สุดเท่าที่จะทำได้ โดยใช้เทคโนโลยี Intelligent automationที่หลากหลายแต่สามารถนำมาเชื่อมต่อและประกอบกันได้

ซึ่งแนวโน้มเหล่านี้องค์กรต่างๆควรจะคำนึงถึงเพื่อกำหนดเป็นกลยุทธ์ในการวางแผน Digital Transformation เพื่อรองรับการเปลี่ยนแปลงของโลกที่จะเกิดขึ้นซึ่งอาจทอดยาวไปถึงอีก 4-5 ปีข้างหน้า

ธนชาติ นุ่มนนท์

IMC Institute

การเปลี่ยนแปลงโมเดลธุรกิจเนื่องจาก Digital Transformation

ผมกับคุณมิค (ศุภชัย สัจไพบูลย์กิจ) ได้มีโอกาสไปบรรยายและทำ Workshop ในหัวข้อ Digital Transformation ให้กับหลายๆองค์กร สิ่งหนึ่งที่คุณมิคจะนำมาให้ผู้เรียนทำเสมอในตอนท้ายก็คือการเขียน Business Model Canvas (BMC) สำหรับการจะเปลี่ยนแปลงธุรกิจ (Business Transformation) ในยุคของดิจิทัล เพราะการทำ Digital Transformation คือการปรับกลยุทธ์และอาจต้องคิดโมเดลของธุรกิจใหม่โดยใช้เทคโนโลยีดิจิทัลเป็นตัวช่วย มากกว่าที่จะคิดเพียงนำเทคโนโลยีดิจิทัลมาใช้ในองค์กรเพียงเพื่อเพิ่มประสิทธิภาพในการทำงานที่ยังมีโมเดลธุรกิจเดิมๆซึ่งอาจกำลังเกิด Digital Disruption

Business Model Canvas เป็นเครื่องมือที่ช่วยออกแบบโมเดลธุรกิจผ่านปัจจัยทั้ง 9 ด้านที่ครอบคลุมส่วนสำคัญๆ ต่อธุรกิจ BMC ถูกพัฒนาและนำเสนอโดย Alexander Osterwalder และ Yves Pigneur ในหนังสือชื่อ Business Model Generation (ปี พ.ศ. 2552) เพื่อเป็นเทมเพลตที่ช่วยออกแบบแบบจำลองธุรกิจหรือโมเดลธุรกิจ และทำให้สามารถช่วยประเมินธุรกิจในด้านต่างๆ 9 องค์ประกอบคือ

  1. Value Propositions คุณค่าของธุรกิจ
  2. Customer Segment กลุ่มของลูกค้าเป้าหมายของเรา
  3. Customer Relationships การสร้างสายสัมพันธ์กับลูกค้า
  4. Channels ช่องทางการเข้าถึงลูกค้า
  5. Key Activities กิจกรรมหลักที่ต้องทำเพื่อขับเคลื่อนธุรกิจ
  6. Key Partners พาร์ทเนอร์หลักของเรา
  7. Key Resource ทรัพยากรที่จำเป็นในการดำเนินธุรกิจ
  8. Revenue Streams รายได้ของของธุรกิจมาจากแหล่งใด
  9. Cost Structure ค่าใช้จ่ายหลักของธุรกิจ

BMC ไม่ใช่เรื่องใหม่แต่ด้วยวิวัฒนาการของเทคโนโลยีทำให้ธุรกิจต่างๆอาจต้องกลับมาทบทวน Business Model ที่ดำเนินอยู่ ทั้งนี้รูปแบบธุรกิจแบบเดิมก็อาจเริ่มเปลี่ยนไปในยุคไอทีที่เข้ามาในช่วงก่อนหน้านี้ซึ่งมีเรื่องของอินเตอร์เน็ตและ Smartphone เข้ามา และกำลังเปลี่ยนไปอีกครั้งในยุคของเทคโนโลยีดิจิทัลที่เราต้องทำ Digital Transformation

ผมเลยอยากเขียนสรุปสั้นๆให้เห็นว่า องค์ประกอบแต่ละด้านของ Business Model Canvas มีการเปลี่ยนแปลงไปอย่างไรในยุคดิจิทัล เพื่อให้ผู้อ่านสามารถนำไปวางแผนปรับโมเดลธุรกิจในการทำ Digital Transformation ดังนี้

  1. Value Proposition ในรูปแบบเดิมเมื่อกล่าวถึงคุณค่าของธุรกิจหรือจุดเด่น ส่วนใหญ่ก็อาจมองที่สินค้าหรือบริการทีดีกว่า ราคาที่ดีกว่า มีนวัตกรรมใหม่ๆ หรือมีแบรนด์ เมื่อเทคโนโลยีไอทีเข้ามาคุณค่าที่จะต้องพิจารณาขึ้นก็อาจเป็นเรื่องของการเข้าถึงได้ตลอดเวลาผ่านเว็บไซต์ โมบาย หรือสามารถทำ Self-service ได้ แต่ในยุคของดิจิทัลที่เป็นอุตสาหกรรม 4.0 สิ่งที่จะเป็นคุณค่าเพิ่มขึ้นมาจะกลายเป็นเรื่องของ สินค้าและบริการที่สามารถปรับเปลี่ยนไปได้ (Customisation) หรือตรงความต้องการของลูกค่าแต่ละคน (Personalization) หรือมีเรื่องของบริการย่อยๆ (Microservices) หรืออาจมีคุณค่าในแง่ของความปลอดภัยด้านไอทีที่แตกต่างกับธุรกิจอื่นๆ เป็นต้น
  2. Customer Segment ในรูปแบบเดิมกลุ่มของลูกค้าเป้าหมายอาจมองในแง่ของอายุ เพศ อาชีพ หรือพื้นที่ แต่ด้วยยุคของดิจิทัลทำให้เราสามารถทำกลุ่มเป้าหมายย่อยได้ (Micro segmentation) โดยการใช้ Data Analytics และเริ่มมีกลุ่มเป้าหมายๆใหม่ๆเช่น กลุ่ม Digital Native กลุ่ม Gamer กลุ่ม Youtuber กลุ่ม Influencer/Blogger และยังสามารถแบ่งกลุ่มเป้าหมายตามพฤติกรรม (Behavioral segmentation) หรือปรับเปลี่ยนกลุ่มเป้าหมายแบบพลวัต (Dynamic segmentaion) โดยการใช้ real-time sensor เพื่อที่จะปรับเปลี่ยนกลุ่มเป้าหมายไปตามาสถานการณ์
  3. Customer Relationships ในรูปแบบเดิมการสร้างสายสัมพันธ์เน้นเป็นรายบุคคล ตามโอกาสต่างๆ เน้นการสร้างเครือข่ายและความน่าเชื่อถือ ที่อาจเป็นความสัมพันธ์ระยะยาว ในยุคของไอทีก็เริ่มมีการนำระบบ CRM (Customer Relationship Management) มาใช้งานมากขึ้น มีการพูดถึงการทราบตัวตนของลูกค้าที่อาจเป็น Digital ID เช่นติดต่อผ่านอีเมล แต่ในยุคดิจิทัลปัจจุบันการบริหารความสัมพันธ์กับลูกค้าอาจทำผ่าน Social Media หรือเป็นการสร้างกระแสทางดิจิทัล (Digital Viral) การพูดคุยกับลูกค้าอาจเป็น Dialog ที่กำหนดเงื่อนไขต่างๆตามความต้องการของลูกค้า นอกจากนี้การระบุตัวตนของลูกค้าก็อาจยากขึ้นเพราะหลายคนอาจเป็นอวตารไม่ใช้บัญชีจริง
  4. Channels ในรูปแบบเดิมช่องทางการเข้าถึงลูกค้าอาจเป็นผ่านการโฆษณา การทำตลาดผ่านสื่อต่างๆ ส่งโปรชัวร์ มีระบบ Call Center พอมาถึงในยุคไอทีก็จะมีการสร้างเว็บ การส่งอีเมล การทำ E-Commerce และระบบออนไลน์ต่างๆ แต่ในปัจจุบันคือยุคของ App ยุคที่ต้องเข้าถึงผ่านโทรศัพท์มือถือเป็นลำดับแรก (Mobile First) ต้องใช้ช่องทางที่หลากหลาย (Omnichannel) ใช้เทคโนโลยีใหม่ๆเช่น Beacon, Augmented Reality และต้องเน้นประสบการณ์ลูกค้า (Customer Experience) ที่อาจวัดความพึงพอใจด้วย Net Promoter Score (NPS)
  5. Key Activities ในรูปแบบเดิมก็จะเน้นเรื่องการพัฒนาผลิตภัณฑ์และบริการ การสร้างนวัตกรรม การขาย การทำตลาด การบริหารภายใน แต่ในยุคไอทีก็เริ่มมีการทำ Digitizing แปลงของขัอมูลและกระบวนการต่างๆให้อยู่ในรูปดิจิทัลมากขึ้น รวมถึงการทำตลาดออนไลน์ สำหรับยุคดิจิทัลในปัจจุบันคงต้องเพิ่มกิจกรรมในการใช้เทคโนโลยีใหม่ๆมากขึ้น เช่นการทำการตลาดแบบอัตโนมัติ การเปลี่ยนระบบขึ้นสู่ Cloud Computing การชำระเงินในรูปแบบใหม่ๆผ่าน Mobile-payment หรือการนำระบบ RPA (Robot Process Automation) เข้ามาใช้ในองค์กร
  6. Key Partners ในรูปแบบเดิมก็จะเน้นหาคู่ค้าช่วยในการขาย การโฆษณา แต่ในปัจจุบันคงต้องเพิ่มความหลากหลายที่อาจมองถึงเรื่องของ คู่ค้าที่เป็นตัวกลาง/แพลตฟอร์ม กลุ่มที่เป็น Startup กลุ่ม Venture Capital กลุ่ม Freelance กลุ่มพันธมิตรในโครงการต่างๆที่ทำด้านเทคโนโลยี หรือโครงการอย่าง Smart City และบางครั้งอาจรวมถึงลูกค้าที่จะมาช่วยในการทำงาน
  7. Key Resource ในรูปแบบเดิมทรัพยากรที่จำเป็นคือเงินทุน บุคลากร อุปกรณ์และสินทรัพย์ต่างๆหรือระบบไอที แต่ในปัจจุบันทรัพยากรที่จำเป็นอาจเน้นเรื่องของดิจิทัลมากขึ้น เช่นการมีข้อมูลขนาดใหญ่ (Big Data) ระบบ Mobile App อุปกรณ์อัจฉริยะต่างๆ ระบบหุ่นยนต์ ระบบ AI และ ระบบ Open-API เป็นต้น
  8. Revenue Streams ในรูปแบบเดิมรายได้คงมาจากการขายสินค้าและบริการในรูปแบบเดิม ต้องบริหารกระแสเงินสด ต้องหาเงินลงทุน พอมาในยุคไอทีรูปแบบของรายได้เริ่มมีความหลากหลายมากขึ้นเข่น Prepaid, Pay-as-you-go หรือรายได้จากโฆษณา ในปัจจุบันกระแสดิจิทัลเข้ามาเต็มที่ทำให้เริ่มมีรูปแบบที่แตกต่างออกไปจากเดิมอีกมากอาทิเช่น Freemium, Fee-in-Free-Out, Pay-to-win, Ownership-to-access หรือ Dynamic pricing เป็นตัน
  9. Cost Structure ค่าใช้จ่ายหลักของธุรกิจซึ่งก็คือการประมาณการค่าใช้จ่ายในแบบเดิมที่มีมา และไม่ได้เปลี่ยนแปลงตามเทคโนโลยีมากนัก

หากองค์กรใดต้องการที่จะทำ Digital Transformation ก็อาจสามารถเริ่มต้นด้วยการทำ Business Model Canvas แล้ววางแผนในบริบทที่ควรจะเปลี่ยนไปในยุคดิจิทัลตามที่กล่าวมาในที่นี้

ธนชาติ นุ่มนนท์

IMC Institute

ใครคือผู้นำทางด้าน AI จีน สหรัฐอเมริกา หรือ สหภาพยุโรป





ในยุคของอุตสาหกรรม 4.0 มีการกล่าวกันว่ามหาอำนาจโลกเปลี่ยนจากการแข่งขันไปอวกาศ (Space Race) เป็นการพัฒนา AI แข่งกัน ประเทศใดที่ทำเรื่องของ AI ได้ดีกว่าประเทศนั้นมีโอกาสสร้างความได้เปรียบในยุคของอุตสาหกรรม 4.0 โดยจะสามารถ เพิ่มศักยภาพการผลิตและสร้างให้ผลิตภัณฑ์มวลรวมในประเทศดีกว่า โดยอาจจะเห็นหุ่นยนต์ที่มีความสามารถในการทำงานได้ดีกว่ามนุษย์ในบางด้าน และประเทศใดที่ไม่สามารถแข่งขันหรือพัฒนา AI ได้ก็จะล้าหลังและไม่สามารถแข่งขันในอุตสาหกรรม 4.0 ได้

คำถามที่น่าสนใจคือว่า ในปัจจุบันชาติใดเป็นผู้ที่ได้เปรียบในการแข่งขัน เมื่อเดือนสิงหาคม ปี 2019 มีผลการศึกษาเรื่อง Who is winning the AI race: China, the EU or the United States? ของ Center for Data Innovation ซึ่งเป็นการเปรียบเทียบศักยภาพการพัฒนา AI ของประเทศจีน สหรัฐอเมริกา และกลุ่มสหภาพยุโรปใน 6 ด้านคือ ด้านทักษะบุคลากร ด้านงานวิจัย ด้านการพัฒนา ด้านการประยุกต์ใช้งาน ด้านข้อมูล และด้านฮาร์ดแวร์

ซึ่งภาพรวมจากการวิจัยพบว่า สหรัฐอเมริกายังนำจีนและสหภาพยุโรปอยู่ใน 4 ด้านคือ ด้านผู้เชี่ยวชาญ ด้านงานวิจัย ด้านการพัฒนา และด้านฮาร์ดแวร์ แต่จีนเองก็นำในด้านข้อมูล และด้านการประยุกต์ใช้งาน โดยภาพรวมจากคะแนนเต็ม 100 สหรัฐอเมริกามีคะแนนนำที่ 44.2 คะแนน จีนได้  32.3 คะแนน และสหภาพยุโรปได้ 23.5 คะแนน ซึ่งผู้นำในแต่ละด้านสรุปได้ดังตารางที่ 1 และผลการศึกษาในแต่ละด้านสามารถสรุปได้ ดังนี้

ตารางที่ 1 ผลการจัดอันดับ AI ในด้านต่างๆ

ด้านจีนสหภาพยุโรปสหรัฐอเมริกา
ผู้เชี่ยวชาญ321
งานวิจัย321
การพัฒนา321
การประยุกต์ใช้งาน123
ข้อมูล132
ฮาร์ดแวร์231
ผลรวม231

 1 ด้านผู้เชี่ยวชาญ

ทีมงานศึกษาได้วัดจากจำนวนนักวิจัยทางด้าน AI โดยพบว่า สหรัฐอเมริกามีจำนวนมากถึง 28,536 คน ขณะที่สหภาพยุโรปมีกระจายอยู่ในประเทศต่างๆ รวม 43,064 คน โดยมีมากสุดในประเทศเยอรมัน 9,441 คน และสหราชอาณาจักร 7,998 คน ส่วนจีนมีอยู่ 18,232 คน อย่างไรก็ตามข้อมูลการศึกษาระบุว่า แม้สหภาพยุโรปจะมีผู้มีทักษะด้าน AI มากสุด แต่ปรากฏว่าจำนวนพนักงานทางด้านนี้ในบริษัทใหญ่ๆ กลับมีน้อยกว่าสหรัฐอเมริกาเนื่องจากมีเงินทุนสนับสนุนน้อยกว่า และบริษัทใหญ่ในสหรัฐอเมริกาก็ยังสามารถที่จะดึงดูดคนเก่งทางด้าน AI ไปทำงานได้ดีกว่าที่อื่นๆ

แต่ทั้งสามกลุ่มประเทศต่างก็มีนโยบายในการที่จะดึงดูดผู้เชี่ยวชาญทางด้าน AI เข้ามาทำงาน และศึกษาต่อระดับปริญญาโท/เอก โดยการให้ทุนการศึกษา และมีงบประมาณการตั้งหน่วยงานวิจัยทางด้าน AI จำนวนมาก เช่น ประเทศจีนมีแผนที่จะตั้งศูนย์วิจัย AI ถึง 50 แห่ง และมีการพัฒนาหลักสูตรออนไลน์ทางด้านนี้ รวมทั้งมีแผน 5 ปี ที่เน้นในการสร้างบุคลากรทางด้าน AI 

2 ด้านงานวิจัย

การวัดขีดความสามารถในการแข่งขันทางด้านงานวิจัย เป็นการเปรียบเทียบจากจำนวนบทความด้าน AI ที่ตีพิมพ์ในการประชุมวิชาการและวารสารต่างๆ รวมถึงจำนวนแหล่งเงินทุนวิจัย ซึ่งเมื่อพิจารณาจำนวนบทความด้าน AI เฉพาะปี 2017 จีนมีบทความเพิ่มขึ้นเป็นอันดับหนึ่งถึง 15,199 บทความ ตามด้วยสหภาพยุโรป 14,776 บทความ และสหรัฐอเมริกา 10,287 บทความ แต่อย่างไรก็ตามเมื่อดูจำนวนบทความย้อนหลังตั้งแต่ปี 1998 สหภาพยุโรปมีมากสุดถึง 164,000 บทความ ตามด้วยสหรัฐอเมริกาที่ 135,000 บทความ และจีน 107,000 บทความ

ในด้านทุนวิจัยจีนมีแผนงานที่จะสนับสนุนเงินปีละ 950 ล้านดอลลาร์ ถึงปี 2025 ส่วนสหภาพยุโรปตั้งเป้าที่จะสนับสนุนงานวิจัยด้าน AI ช่วงปี 2018-2020 จำนวน 1,700 ล้านดอลลาร์ และกำลังทำแผนนำเสนอขอเงินสนับสนุนอีก 8,000 ล้านดอลลาร์ ตั้งแต่ปี 2021-2027 ส่วนสหรัฐอเมริกาก็สนับสนุนงบประมาณวิจัยด้าน AI ตั้งแต่ปี 2015 จำนวน 1,100 ล้านดอลลาร์ และล่าสุดเมื่อกันยายน ปี 2018 ก็ประกาศเพิ่มงบประมาณอีก 2,000 ล้านดอลลาร์สำหรับอีก 5 ปีข้างหน้า

นอกจากนี้การสำรวจการลงทุนงบวิจัยและพัฒนาของบริษัทขนาดใหญ่ด้านไอทีในแต่ละประเทศที่ติดอันดับ 2,500 บริษัทแรกของโลกพบว่า สหรัฐมีการลงทุนงานวิจัยสูงสุดที่ 77.4 พันล้านดอลลาร์ ตามด้วยจีน 11.8 พันล้านเหรียญ และสหภาพยุโรป 10.5 พันล้านดอลลาร์ 

ซึ่งเมื่อพิจารณาภาพรวมในด้านนี้สหรัฐอเมริกามีคะแนนเป็นอันดับหนึ่ง ตามด้วยสหภาพยุโรปและจีน แต่อย่างไรก็ตามคุณภาพด้านงานวิจัยของจีนกำลังเร่งขึ้นมาและในอนาคตน่าจะสามารถที่แซงสหภาพยุโรปได้

3. ด้านการพัฒนา

การศึกษาทางด้านนี้คือ การวิเคราะห์ในมุมของจำนวนบริษัททางด้าน AI จำนวนสิทธิบัตร จำนวนบริษัท Startup ด้าน AI ตลอดจนเงินลงทุนของ Venture Capital (VC) ซึ่งพบว่า สหรัฐอเมริกายังเป็นผู้นำทางด้านนี้ โดยมีบริษัทด้าน AI ถึง 1,727 บริษัท มีจำนวน Startup 1,393 บริษัท เงินลงทุนจาก VC และหุ้นนอกตลาด (Private Equity) จำนวน 16.9 พันล้านดอลลาร์ และมีสิทธิบัตรที่มีการอ้างอิงด้าน AI จำนวน 28,031 ฉบับ ส่วนสหภาพยุโรปตามมาเป็นอันดับสอง โดยมีบริษัทด้าน AI จำนวน 762 บริษัท มีจำนวน Startup 726 บริษัท เงินลงทุนจาก VC และหุ้นนอกตลาดจำนวน 2.8 พันล้านดอลลาร์ และมีสิทธิบัตรที่มีการอ้างอิงด้าน AI จำนวน 2,985 ฉบับ  

ส่วนจีนแม้จะอยู่อันดับสุดท้ายโดยมีบริษัทด้าน AI จำนวน 224 บริษัท มีจำนวน Startup 383 บริษัท และมีสิทธิบัตรที่มีการอ้างอิงด้าน AI จำนวนเพียง 691 ฉบับ แต่เงินลงทุนจาก VC และหุ้นนอกตลาด (Private Equity) มีจำนวนถึง 13.5 พันล้านดอลลาร์ ทำให้ในอนาคตมีโอกาสที่จะแซงสหภาพยุโรปที่มีเงินสนับสนุน Startup น้อยกว่า

4. ด้านการประยุกต์ใช้งาน

มีการคาดการณ์ว่าในปี 2030 เทคโนโลยี AI จะสร้าง GDP ของโลกเพิ่มขึ้นถึง 13 ล้านล้านดอลลาร์ ซึ่งอุตสาหกรรมต่างๆ ก็เริ่มให้ความสำคัญและต่างนำ AI มาประยุกต์ใช้ในงานต่างๆ เพื่อที่จะสร้างศักยภาพการแข่งขัน ซึ่งจากการศึกษาพบว่า จีนนำหน้าสหรัฐอเมริกา และสหภาพยุโรป ในด้านการนำมาประยุกต์ใช้ โดยข้อมูลในปี 2018 พบว่า บริษัทในจีน 32% ได้ประยุกต์ใช้ AI แล้ว ขณะที่สหรัฐอเมริกามี 22% และ สหภาพยุโรปมีเพียง 18% นอกจากนี้ยังพบว่า บริษัทในจีนถึง 53% ที่กำลังมีการทดลองใช้ AI ขณะที่สหรัฐอเมริกา และสหภาพยุโรป มีเพียง 29% และ 26% ตามลำดับ

ทั้งนี้จากผลการศึกษาพบว่าประชากรจีนเห็นผลกระทบของเทคโนโลยี AI มากถึง 76% ขณะที่สหรัฐอเมริกามีประชากร 58% ที่เห็นผลกระทบของ AI ส่วนในสหภาพยุโรปเมื่อพิจารณาในเรื่องนี้บางประเทศพบว่า ประชากรเห็นความสำคัญ ดังนี้ ฝรั่งเศส 52% เยอรมัน 57% สหราชอาณาจักร 51% และสเปน 55% ทำให้จีนเป็นผู้นำทางด้านการประยุกต์ใช้งาน ตามมาด้วยสหรัฐอเมริกา และสหภาพยุโรป

5. ด้านข้อมูล

เทคโนโลยี AI จำเป็นจะต้องมีข้อมูลจำนวนมากมาสร้างโมเดลในการพยากรณ์ ยิ่งมีข้อมูลมากเท่าไรก็จะยิ่งทำให้โมเดลมีความแม่นยำมากขึ้น แต่อาจยังไม่มีวิธีการวัดปริมาณข้อมูลที่สามารถนำมาใช้ทางด้าน AI โดยตรง ดังนั้นการศึกษาของทีมงานนี้จึงใช้ข้อมูลในปี 2018 จากปริมาณการใช้ Broadband การชำระเงินผ่านมือถือ การสร้างข้อมูลจากอุปกรณ์ IoT ข้อมูลใหม่อื่นๆ ที่สร้างขึ้น ข้อมูลด้านการแพทย์ ข้อมูลพันธุกรรม และข้อมูลแผนที่ที่มีความละเอียดสูง โดยสามารถสรุปปริมาณข้อมูลของแต่ละประเทศได้ดังตารางที่ 2

ตารางที่ 2 ปริมาณข้อมูลของประเทศต่างๆ

ประเภทจีนสหภาพยุโรปสหรัฐอเมริกา
จำนวนการใช้ Fixed Broadband (ล้าน)394.2175.7109.8
จำนวนการชำระเงินผ่านมือถือ (ล้าน)525.144.755.0
จำนวนข้อมูลใหม่ด้าน IoT (TB)1525369
ข้อมูลใหม่อื่นๆ (TB)684583966
ข้อมูลด้านการแพทย์ (อันดับ)321
ข้อมูลพันธุกรรม (อันดับ)231
ข้อมูลแผนที่ที่มีความละเอียดสูง (อันดับ)321

ซึ่งเมื่อพิจารณาจากปริมาณข้อมูลโดยรวมแล้ว จีนมีมากกว่าสหรัฐอเมริกาและสหภาพยุโรป นอกจากนี้เมื่อพิจารณาถึงกฎระเบียบในการใช้ข้อมูลจะพบว่า สหภาพยุโรปมีกฎระเบียบ GDPR ที่เข้มงวดอย่างมาก การนำข้อมูลบุคคลต่างๆ มาใช้งานจึงเป็นอุปสรรค ขณะที่สหรัฐอเมริกาก็มีกฎหมายเฉพาะในบางด้าน เช่น ทางการแพทย์ หรือกฎหมายความปลอดภัยของข้อมูล ส่วนจีนไม่ได้เข้มงวดในเรื่องนี้มากนัก ทำให้บริษัทต่างๆ ในจีนสามารถเก็บและใช้ข้อมูลได้ง่ายกว่า

 6. ด้านฮาร์ดแวร์

เทคโนโลยี AI ขึ้นอยู่กับประสิทธิภาพของฮาร์ดแวร์ ซึ่งมีการพัฒนาระบบประมวลกราฟิก (GPU) ที่มีประสิทธิภาพสูงเพื่อสร้างโมเดลด้าน AI หรือมีการพัฒนา AI Chip เพื่อใช้ประมวลผลเฉพาะด้าน เช่น การทำ Face Recognition หรือการใช้ในโทรศัพท์มือถือ และก็มีการพัฒนา Supercomputer ในการประมวลผลขนาดใหญ่ ซึ่งจากการศึกษาของทีมงานนี้พบว่า สหรัฐอเมริกายังเป็นผู้นำทางด้านฮาร์ดแวร์สำหรับ AI โดยมีบริษัทชั้นนำที่ทำทางด้าน Semiconductor ที่ติดอันดับ Top 15 ของโลกจำนวนถึง 6 บริษัท และมีบริษัททำ AI Chip 55 บริษัท และมีจำนวน Supercomputer ที่ติดอันดับ Top 500 ของโลกจำนวน 92 เครื่อง ส่วนจีนตามมาเป็นอันดับสอง มีบริษัท Semiconductor เพียงบริษัทเดียว แต่มีบริษัทที่ทำ AI Chip 26 บริษัท และมีจำนวน Supercomputer มากกว่าประเทศอื่นคือ มีถึง 219 เครื่อง ส่วนสหภาพยุโรปมีบริษัท Semiconductor สองแห่ง มีบริษัทที่ทำ AI Chip 12 บริษัท และมีจำนวน Supercomputer 116 เครื่อง   

จากผลการศึกษาพบว่าสหรัฐอเมริกายังแข่งขันกับจีนอยู่ในเรื่องของการพัฒนา  Supercomputer โดยเครื่องคอมพิวเตอร์ที่ประมวลผลที่เร็วที่สุดในโลกสองอันดับแรกคือ Summit และ Sierra ก็อยู่ที่กระทรวงพลังงานของสหรัฐอเมริกาและมีจำนวน Supercomputer ที่ติด Top 10 ถึง 6 แห่งที่อยู่ในสหรัฐอเมริกา และอุปกรณ์ Semiconductor ที่อยู่ในเครื่อง Supercomputer ทั่วโลก 98% มาจากบริษัท Nvidia และ Intel แต่ชาติอื่นๆ โดยเฉพาะจีนก็เริ่มมีการพัฒนา Supercomputer ได้ดีขึ้น โดยในอดีตเมื่อปี 2010 สหรัฐอเมริกาเคยมีจำนวน Supercomputer ติด Top 500 ถึง 282 เครื่อง ก่อนจะถูกจีนแซงหน้าในปัจจุบัน  

จากผลการศึกษาโดยรวมแม้สหรัฐอเมริกายังเป็นผู้นำทางด้าน AI แต่ด้วยนโยบายของรัฐบาลจีนที่มุ่งเน้นในด้านนี้ ประกอบกับจำนวนงบประมาณมหาศาล พร้อมกับเริ่มมีการใช้งานแล้วจำนวนมาก ทำให้จีนดูน่ากลัวและอาจสามารถแซงสหรัฐอเมริกาขึ้นอันดับหนึ่งในอนาคต

ธนชาติ นุ่มนนท์

IMC Institute

“ปิดสวิทช์โซเชียลมีเดีล” ทางเลือกหยุดกระบวนการปั่นความคิด

ผมเองได้เขียนบทความเกี่ยวกับเรื่องของผลกระทบของ Social Media ที่ได้สร้างผลกระทบทางสังคมลงในหนังสือพิมพ์กรุงเทพธุรกิจอยู่หลายตอนอาทิเช่น

แต่เผอิญบทความอีกเรื่องหนึ่งที่เขียนไว้คือ “ปิดสวิทช์โซเชียลมีเดีล” ทางเลือกหยุดกระบวนการปั่นความคิด ไม่ได้มีการเผยแพร่ทางเว็บไซต์ ผมเลยอยากนำบทความนี้มาเผยแพร่ในบล็อกนี้ตามนี้ครับ

——————-

เมื่อเร็วๆ นี้ หลังการบรรยาย ผมกำลังเดินทางกลับบ้านเมื่อก้าวเข้าไปในรถก็มีข้อความปรากฎขึ้นบนมือถือและส่งไปยังนาฬิกาอัจฉริยะ เพื่อแสดงพร้อมกันว่า “อีก 50 นาที จะเดินทางกลับถึงบ้าน” แม้จะไม่ใช่ครั้งแรกที่มีการส่งข้อความเช่นนี้เข้ามา เพราะอีกหลายครั้งที่จอดรถก็จะมีข้อความส่งมาที่มือถือหลังจากลงจากรถ โดยระบุว่าผมจอดรถที่ใดเช่นกัน หลังจากพิจารณาอยู่พักหนึ่งทำให้ผมคิดได้ว่าเพราะโทรศัพท์มือถือของผมต่อเชื่อมกับระบบบูลทูธของรถยนต์ ทำให้เชื่อมต่อกับโปรแกรมแผนที่ของมือถือ ซึ่งมีระบบปัญญาประดิษฐ์ (เอไอ) คอยจดจำว่าผมเดินทางไปตำแหน่งใดบ่อย และสามารถคาดการณ์พฤติกรรมผมได้ว่าที่ใดเป็นบ้านหรือที่ทำงานของผม

ผมใช้ชีวิตอยู่กับอินเทอร์เน็ตมาเกือบสามสิบปี ใช้โซเชียลมีเดียมากว่าสิบปี และใช้อุปกรณ์ที่เชื่อมต่อกับอินเทอร์เน็ตอีกมากมาย ตั้งแต่โทรศัพท์มือถือ นาฬิกาอัจฉริยะ แทปเล็ต คอมพิวเตอร์ ทีวี ลำโพงอัจฉริยะ กล้อง เซ็นเซอร์ต่างๆ หลอดไฟ หรือแม้แต่หม้อหุงข้าวก็เชื่อมต่ออินเทอร์ ถ้านับอุปกรณ์เหล่านี้มีมากถึงราว 50 ชิ้น นอกจากนี้การงานยังเกี่ยวข้องกับการใช้คอมพิวเตอร์ต้องค้นข้อมูล ใช้บริการออนไลน์ต่างๆ มากมาย และใช้โซเชียลมีเดียหลายระบบ

การใช้ชีวิตอยู่กับโลกออนไลน์มานานทำให้ข้อมูลส่วนตัวต่างๆ ผมถูกส่งเข้าไปในระบบอินเทอร์เน็ตจำนวนมาก พฤติกรรมหลายอย่างของผมถูกเก็บข้อมูลไป บริษัทอินเทอร์เน็ตมีข้อมูลว่า ผมค้นข้อมูลอะไร เดินทางไปที่ใด เลือกดูหนังฟังเพลงออนไลน์อะไร ผมคลิ๊กอะไร ใครบ้างเป็นเพื่อนออนไลน์ของผม ผมคุยกับใคร ชอบอะไร ซื้อสินค้าอะไร ประตูบ้านผมเปิดตอนไหน ใช้โทรศัพท์อะไร ผมรู้กระทั่งว่าผมทำธุรกรรมอะไร ทำให้เชื่อได้ว่าทุกวันนี้ข้อมูลผมจำนวนมหาศาลถูกเก็บไว้ที่บริษัทต่างๆ เหล่านั้น

ช่วงที่ใช้อินเทอร์เน็ตยุคแรกๆ โซเชียลมีเดียยังไม่ได้มีความสามารถมากมายเช่นนี้ ข้อมูลยังมีเพียงเล็กน้อย การประมวลผลไม่ได้รวดเร็วเท่านี้ และที่สำคัญคือ อัลกอริทึกของระบบเอไอยังไม่เก่งเท่านี้ แต่พอเราเล่นโซเชียลมีเดียมากชขึ้น ส่งข้อมูลเข้าอินเทอร์เน็ตมากขึ้น ระบบเอไอก็จะเก่งมากขึ้น คาดการณ์พฤติกรรมต่างๆ ของเราได้ดีขึ้น ประกอบกับความก้าวหน้าของเทคโนโลยีที่โตแบบก้าวกระโดด ทำให้เริ่มเห็นว่าช่วง 2-3 ปีที่ผ่านมานี้ ระบบอินเทอร์เน็ตโดยเฉพาะโซเชีนยลมีเดียมีความน่ากลัวขึ้น เราสูญเสียความเป็นส่วนตัว และเริ่มถูกครอบงำความคิดหลายอย่างจากโซเชียลมีเดียผ่านระบบเอไอ

เมื่อสองสัปดาห์ที่ผ่านมาผมได้เขียนบทความเรื่อง “การโฆษณาชวนเชื่อในยุคใหม่ผ่านโซเชียลมีเดีย” และชี้ให้เห็นว่าโซเชียลมีเดียกำลังสร้างความแตกแยกให้กับสังคมโดยใช้เทคโนโลยีอัตโนมัติมาคอยชักใย ซึ่งก็พอดีกับที่ทาง Netflix ได้เผยแพร่สารคดี “Social Dilemma” ที่ตีแผ่โซเซียลมีเดียอย่างล้ำลึก โดยชี้ให้เห็นถึงความน่ากลัวในการเก็บข้อมูลของผู้ใช้ โดยมองว่าผู้ใช้คือ สินค้าที่เจ้าของเทคโนโลยีจะต้องรู้พฤติกรรมทุกอย่าง

เราเคยดูหนังวิทยาศาสตร์ที่พูดถึงหุ่นยนต์จะมาครอบครองโลกและมาบงการชีวิตมนุษย์ ซึ่งดูแล้วเหมือนไม่น่าจะเป็นไปได้ แต่แท้จริงแล้วสิ่งต่างๆ เหล่านี้เริ่มเกิดขึ้นจริงจากการที่โซเชียลมีเดียเริ่มมาครอบงำความคิดเรา มาบงการทางอ้อมให้เรามีพฤติกรรมตามการแนะนำของระบบเอไอ มาแนะนำข้อความต่างๆ ให้เราอ่าน นำเสนอสินค้าให้ แนะนำสถานที่ให้ แนะนำเพื่อนให้เราคุยด้วย รวมทั้งแนะนำหนังหรือเพลงให้เราฟัง

ในสารคดีนี้ได้นำผู้บริหารที่เคยทำงานอยู่ในบริษัทโซเชียลมีเดียต่างๆ เหล่านี้มาให้สัมภาษณ์และพูดถึงความน่ากลัวของการทำงานของระบบที่อยากให้คนมาใช้มากๆ และเสพติดที่จะใช้ตลอดเวลา และคอยชักใยการใช้งานของผู้ใช้ผ่านระบบเอไอ หลายคนถามหาจริยธรรมของบริษัทเหล่านี้และพวกเขาเองพยายามที่จะหยุดการเสพการใช้โซเชียลมีเดีย ลดการใช้อินเทอร์เน็ตและมือถือ รวมถึงไม่อยากให้ลูกเล่นจนกว่าอายุ 16 ปี เพราะคนรุ่นใหม่จะเกิดมาในยุคที่มีระบบดิจิทัลเรียบร้อยแล้ว อาจมองสิ่งต่างๆ เหล่านี้เป็นเรื่องปกติโดยไม่รู้ตัวว่ากำลังถูกครอบงำความคิดจากระบบโซเชียลมีเดีย

โซเชียลมีเดียทำให้เกิดความแตกแยกทางสังคม โดยการปลุกปั่นความคิด ซึ่งหากผู้คนมีความคิดที่แบ่งออกเป็น 2 ข้าง โซเชียลมีเดียก็จะนำเสนอแต่เรื่องที่เรามีความเห็นตรงกันมาให้เราตลอดวลาแบบสุดโต่ง โดยที่ไม่ได้รับข้อมูลที่เห็นต่างกันบ้างเลย ข้อมูลเหล่านี้หลายอย่างเป็นข้อมูลเท็จ และมีผลประโยชน์แอบแฝง นอกจากนี้ยังพบว่า ข้อมูลเท็จจะสามารถเผยแพร่ข้อมูลได้รวดเร็วกว่าข้อมูลจริงถึง 6 เท่า ดังนั้นจึงไม่แปลกใจที่อดีตผู้บริหารของเฟซบุ๊กที่ให้สัมภาษณ์ในสารคดีนี้บอกว่า ความแตกแยกทางสังคมนี้มีโอกาสที่จะนำไปสู่การเกิดสงครามกลางเมืองได้

สถานการณ์ที่กำลังเกิดขึ้นในบ้านเราส่วนหนี่งเป็นผลพวงจากการที่เราใช้ชีวิตอยู่บนโลกอินเทอร์เน็ตมานานเกินไป ข้อมูลพฤติกรรมต่างๆ ที่ถูกป้อนเข้าไปทำให้เราเริ่มถูกครอบงำทางความคิด อาจจะต้องถึงเวลาที่ต้องเริ่มคิดใหม่ว่าบางช่วงอาจต้องหยุดใช้อินเทอร์เน็ต หยุดป้อนข้อมูลบางอย่างให้กับระบบและถ้าความแตกแยกทางสังคมหนักสุดจนมีแนวโน้มไปสู่การเกิดสงครามกลางเมือง ไม่แน่ว่าเราอาจถึงเวลาต้อง “ปิดสวิทช์โซเชียลมีเดีย” ก็เป็นไปได้

ธนชาติ นุ่มนนท์

IMC Institute


วิกฤติโควิด-19: อย่าตกอยู่ใน Fear Zone แต่ควรก้าวเข้าสู่ Learning Zone และ Growth Zone

91982025_1687796244701042_140202412739657728_n (1)

ผมเห็นรูปนี้ที่แชร์กันมาซึ่งตั้งคำถามว่าเราจะเลือกอยู่ในกลุ่มใดในสถานการณ์โควิด-19 ครั้งนี้ ผมเชื่อว่าคนจำนวนหนึ่งเลือกที่จะอยู่ในกลุ่ม Fear Zone อยู่ด้วยความกลัว กล่าวคือตื่นตระหนักในเรื่องต่างๆไปหมด ค้นหาข้อมูลต่างๆเกี่ยวกับการระบาดและเชื้อโรค COVID-19 ติดตามข่าวสารต่างๆโดยเฉพาะจากสังคมโซเชียลปราศจากการกรองข้อมูลและเห็นข่าวก็รีบไปแชร์ กักตุนสินค้าอาหาร มองหาคนที่จะตำหนิด่าว่าทั้งรัฐบาลหรือทุกภาคส่วนว่าไม่สามารถจะแก้ปัญหาได้

91839973_10215761889511472_7893494138736214016_o

กลุ่มที่สองคือพวก Learning Zone คือกลุ่มคนที่จะเรียนรู้ที่จะอยู่กับมัน เลิกที่จะบริโภคข่าวสารที่ทำให้เกิดอาการจิตตก ให้กำลังใจกับคนทำงานและยอมรับสถานการณ์ที่อาจทำให้ชีวิตอยากลำบากขึ้น ไม่ใช้ชีวิตให้ว่างเปล่ารวมถึงมองหาโอกาสใหม่ๆในการทำงาน

กลุ่มที่สามคือพวก Growth Zone คือกลุ่มคนที่เห็นอกเห็นใจและพร้อมที่จะช่วยผู้อื่นจากทักษะที่ตัวเองมีอยู่ ใช้ชีวิตในวันนี้โดยมีภาพอนาคตข้างหน้าที่ชัดเจน ไม่ได้อยู่รอคอยความหวังแค่วันนี้ให้หมดไปแต่มองโลกในแง่บวก ถามตัวเองเสมอว่าจะทำให้วันนี้ให้เป็นอย่างไรเพื่อวันข้างหน้า สุดท้ายมองทุกอย่างด้วยความหวังและมีความคิดสร้างสรรและผมที่จะเผชิญปัญหาต่างๆด้วยความท้าทาย

แม้วิกฤติโควิดนี้จะกระทบต่อสถาบันไอเอ็มซีอย่างมากจากการที่เราต้องงดงานอบรมและสัมมนาแทบทั้งหมด แต่ผมบอกกับน้องๆทุกคนว่า จากวิกฤตินี่ละครับคือจุดที่ทำให้เราต้องเปลี่ยน เราเคยคิดว่าจะต้องปรับองค์กรในหลายๆเรื่องเพื่อที่ไปสู่บริการดิจิทัลเต็มรูปแบบ วิกฤตินี้คือตัวเร่งที่ทำให้เราต้องไปโดยทันทีเรายังมีโอกาสเรามีหวัง วางแผนไปข้างหน้า ทำวันนี้ให้ดีที่สุด ใช้เวลาในวันนี้ให้มีค่า แต่โลกได้เปลี่ยนไปแล้ว วันนี้เป็นการสอนบทเรียนให้ทุกคนเข้มแข็งและอยู่กับมันครับ

เราปรับองค์กรหลายๆอย่างเน้นโดยตอนนี้ไปงานโปรเจ็ค Big Data ที่เราทำให้องค์กรต่างๆมากขึ้น เน้นโครงการวิจัยการตลาดไอที รวมถึงปรับทักษะน้องๆให้มีความสามารถทางด้านการเรียนการสอนออนไลน์มากขึ้น เราปรับการอบรมและการสัมมนามาอยู่ในรูปออนไลน์สอนกันสด โดยเรียกว่า Interactive Online Training  หลายๆวิชา ผู้เข้าอบรมอยู่ที่ไหนก็ได้ เริ่มเปิดหลักสูตรออนไลน์ แต่ขณะเดียวกันเราก็ใช้โอกาสเหล่านี้จัด Free Webinar หลายๆครั้งเพื่อให้ผู้คนสามารถที่จะต่อสู้และปรับตัวกับวิกฤติครั้งนี้ด้วยเทคโนโลยีดิจิทัล

สุดท้ายนี้ผมเชื่อครับว่าถ้าเราพยายามทำตัวอยู่ใน Growth Zone ทุกคนจะฝ่าฟันวิกฤตินี้แล้วเราจะโตขึ้นอย่างแข่งแกร่งขึ้นจากบทเรียนในวันนี้

ธนชาติ นุ่มมนท์

IMC Institute

92647706_1688579801289353_3995388160258342912_n91594059_1684015278412472_5480682666913169408_o

โลกยุคหลังโควิด กับการเปลี่ยนแปลงที่ไม่อาจคาดการณ์ได้

91618641_1684893861657947_6150479015678312448_n

สัปดาห์ก่อนผมเขียนบทความว่าต่อไป โลกจะแบ่งเป็นยุคก่อนโควิด (Pre-COVID era) และยุคหลังโควิด (Post-COVID era) ลงในหนังสือพิมพ์กรุงเทพธุรกิจ (อ่านบทความ สุดท้ายเราจะเห็นคำว่าโลก ‘ยุคก่อนโควิด’ และ’ยุคหลังโควิด’) เพราะคาดการณ์ว่าวิกฤติโควิดนี้จะอยู่กับเราเป็นเวลานาน ทำให้ต่อไปสังคม เศรษฐกิจ และการเมืองจะเปลี่ยนไปอย่างมาก

หลายคนอาจเคยดูหนังและสารคดีที่เล่าเรื่องชีวิตในช่วงสงครามโลกครั้งที่สอง โลกยุคก่อนสงครามเป็นแบบหนึ่ง แต่เมื่อก้าวเข้าสู่สงครามในระยะต้นผู้คนก็ยังคาดหวังว่าสงครามจะสิ้นสุดโดยเร็ว คาดหวังว่าเมื่อสงครามสิ้นสุดลงตัวเองจะกลับไปทำอะไร บางคนคาดหวังจะไปประกอบอาชีพบางอย่าง บางคนอยากไปแต่งงาน ไปใช้ชีวิตกับครอบครัว แต่สงครามโลกครั้งที่สองใช้เวลายาวนานถึงสี่ปี มีความสูญเสียจำนวนมากทั้งชีวิตผู้คนและบ้านเมือง เมื่อสิ้นสุดสงครามก็เกิดการเปลี่ยนแปลงอย่างมากมาย สังคมไม่เหมือนเดิม บางคนสูญเสียคนละครอบครัว ไม่มีบ้านจะอยู่ อาชีพการงานก็ไม่เป็นเช่นเดิม หลายประเทศเปลี่ยนแปลงระบอบการปกครอง ชีวิตผู้คนก็เปลี่ยนไป

37342743_2344874038863830_2015538013534158848_o

ย้อนนึกไปถึงหนังเรื่อง Demolition man ที่ผมเคยดูเมื่อเกือบ 30 ปีก่อน ซึ่งเป็นหนังวิทยาศาสตร์แอคชั่น (Sci-fi action) ที่พระเอกของเรื่องที่นำแสดงโดย Sylvester Stallone ถูกจองจำแบบแช่แข็งและได้ออกมาใช้ชีวิตในปี 2032 ที่เขาพบว่าบ้านเมืองเปลี่ยนไปอย่างมาก ผู้คนที่อยู่อาศัยจะถูกตรวจสอบการใช้ชีวิตทุกอย่าง บ้านเมืองมีกล้อง CCTV ติดไปทั่ว ผู้คนไม่มีความเป็นส่วนตัว มีระบบการตรวจสอบเหมือนที่ประเทศจีนในปัจจุบัน ที่เจ้าหน้าที่ของรัฐสามารถตรวจสอบได้ตั้งแต่การเดินทาง และการสนทนา ทั้งนี้ก็เพื่อควบคุมพฤติกรรมของผู้คนในสังคม

ในหนังยังมีการกล่าวถึงการเกิดการแพร่ระบาดของเชื้อโรคครั้งใหญ่ก่อนปี 2032 ที่ทำให้การใช้ชีวิตผู้คนในปี 2032 เปลี่ยนไป ทุกคนจะไม่มีการสัมผัสกัน ไม่มีการจับมือกันแบบเดิม การทักทายด้วยการ shake hand จะไม่มีการสัมผัสมือกัน ผู้คนจำนวนมากจะสวมถุงมือ ไม่มีการกอดจูบหรือมีเพศสัมัพนธ์กัน การแต่งกายก็เป็นไปอย่างเรียบง่ายคล้ายๆกันไปหมด ที่น่าสนใจก็คือสังคมในหนังจะไม่มีการใช้จ่ายเงินสดทุกอย่างจ่ายผ่านระบบดิจิทัลที่มีการฝั่งชิบในร่างกาย และอุปกรณ์หลายๆอย่างในหนังก็จะเป็นการสั่งงานด้วยเสียง รวมถึงมีรถยนต์ไร้คนขับที่สั่งงานด้วยเสียง แม้หนังจะสร้างเมื่อปี 1993 แต่ก็สามารถคาดการณ์เทคโนโลยีดิจิทัลและเอไอในปัจจุบันได้หลายอย่างทั้งระบบ Voice control, Video call  และ Digtial payment

จากหนังเรื่องนั้นทำให้ผมไม่แน่ใจว่า ถ้าโรคระบาดนี้มีความรุนแรงและต่อเนื่องเป็นเวลานานสังคมจะเปลี่ยนแปลงไปอย่างในหนังหรือไม่ และเช่นกันทำให้นึกถึงระยะต้นของสงครามโลกครั้งที่สองที่ทุกคนยังคิดว่าสงครามจะจบโดยเร็ว เหมือนตอนนี้ที่เป็นระยะเริ่มต้นของการแพร่ระบาดของเชื้อไวรัสโควิด-19  ที่ผู้คนยังมีความหวังในตอนต้นว่ามันจะจบโดยเร็ว ที่ตอนแรกเราคิดว่าเดือนหนึ่งน่าจะเสร็จ แต่ตอนนี้เราเริ่มคุยกันว่าถึงครึ่งปีนี้ บ้างก็เริ่มบอกแล้วว่าอาจข้ามไปถึงปีหน้า ซึ่งถ้ามันยาวนานขนาดนั้นมันก็คงเปลี่ยนแปลงสังคมของเราไปอย่างมาก

หลายๆคนตั้งคำถามว่าหลังโควิดแล้วเราจะเห็นอะไรที่เปลี่ยนไปบ้างโดยเฉพาะด้านธุรกิจแล้วจะต้องทำอย่างไร เจ้าของธุรกิจบางคนก็จะบอกว่าตอนนี้ยังไม่อยากคิดอะไร เอาธุรกิจตัวเองให้รอดในช่วงโควิดนี้ก่อนหลังจากนั้นแล้วค่อยว่ากัน จริงๆแล้วถ้าวิกฤตินี้ลากยาวนานเราอาจจะคิดอย่างนั้นไม่ได้ เราไม่สามารถที่จะคิดไปว่าวันนี้เราจะอยู่รอดอย่างไรในวิถีเดิม เพราวิถีชีวิตผู้คนจะเปลี่ยนไป วิธีการทำงานของผู้คนจะเปลี่ยนไป อาชีพบางอย่างหายสูญหายไป ธุรกิจบางอย่างอาจเปลี่ยนโฉมไปอย่างสิ้นเชิง ดังนั้นวันนี้เราคงต้องเริ่มคิดรูปแบบการทำงานและธุรกิจที่เปลี่ยนแปลงไปอย่างมาก ธุรกิจเราอาจไม่ใช่รูปแบบเดิมๆ ต้องเริ่มคิดโดยต้องมีการนำเทคโนโลยีดิจทัลเข้ามาช่วย ลูกค้าเราอาจเปลี่ยนพฤติกรรมไปทำให้สิ่งที่เคยมีความจำเป็นในวันนี้ก็อาจเริ่มไม่ใช่แล้ว

ซึ่งบทความตอนต่อไป ผมจะมาคาดการณ์ว่าน่าจะมีการเปลี่ยนแปลงอะไรบ้าง

ธนชาติ นุ่มนนท์

IMC institute

บทนำ จากหนังสือรวมบทความปี 2562 ของผม

73251706_1522920721188596_4970794027956830208_n

ผมจบปริญญาตรีสาขาวิศวกรรมไฟฟ้าที่มหาวิทยาลัยขอนแก่น จบมาในยุคที่ยังเรียนโปรแกรมคอมพิวเตอร์ ภาษา Fortran ด้วยการเจาะบัตรที่ใช้เครื่องคอมพิวเตอร์เมนเฟรม เรียนจนปีสุดท้ายถึงจะเริ่มเห็นเครื่องไมโครคอมพิวเตอร์เข้ามา แล้วก็เริ่มหัดมาเขียนภาษาปาสคาล โปรล็อก และ ภาษาซี บนเครื่องไมโครคอมพิวเตอร์ ตอนไปเรียนปริญญาโทและเอกสาขาวิศวกรรมไฟฟ้าและอิเล็กทรอนิกส์ที่มหาวิทยาลัยโอ็กแลนด์ ประเทศนิวซีแลนด์ ก็ได้เรียนเกี่ยวข้องกับวิชาคอมพิวเตอร์มากขึ้นหน่อยเพราะทำวิจัยทางด้าน Image Progrocessing และ Machine Leaning Algorithm และเมื่อใกล้ๆจะเรียนจบก็เริ่มมีระบบอินเตอร์เน็ตเข้ามาใช้ ทำให้สามารถเขียนโปรแกรมที่ซับซ้อนขึ้นและก็สามารถส่งโปรแกรมไปรันผ่านเครืองคอมพิวเตอร์ความเร็วสูงข้ามประเทศได้ แต่ประสิทธิภาพของระบบคอมพิวเตอร์และความเร็วของอินเตอร์เน็ตสมัยนั้นยังห่างชั้นกับปัจจุบันอย่างมากมาย

เมื่อจบปริญญาเอกกลับมาสอนหนังสือ และเขียนโปรแกรมต่างๆ ตลอดจนพัฒนาการเรียนรู้ตัวเองจนเป็น Certified Java Programmer ก็ยังรู้สึกว่าตัวเองเป็นนักไอที มองว่าเราคือโปรแกรมเมอร์และอาจารย์ ที่อาจจะแปลกแยกกับโลกของธุรกิจหรือสังคมส่วนใหญ่ ไอทีในยุคนั้นยังเป็นเพียงแค่งานสนับสนุนให้องค์กรหรือธุรกิจทำงานไปได้ดีขึ้น แม้จะมีมือถือรุ่นใหม่ๆอย่างที่สามารถพัฒนาโปรแกรมภาษาจาวาอย่าง Nokia 7650 และตัวผมเองก็มีโอกาสไปสอนคนตามที่ต่างๆให้ใช้มืือถือรุ่นใหม่ ให้พัฒนาโปรแกรมบนมือถือ แต่ก็ยังเป็นโลกไอทีที่ยังไม่สอดคล้องกับธุรกิจมากนัก แม้จะมีการใช้อินเตอร์เน็ตแต่ส่วนใหญ่ก็ยังเป็นการเชื่อมต่อโดยการใช้เครื่องคอมพิวเตอร์มากกว่าทางมือถือ และความเร็วของการใช้อินเตอร์เน็ตก็ยังช้าอยู่

เมื่อเริ่มเข้ามาทำงานในภาคเอกชนกับบริษัท Sun Microsystems  ก็เริ่มเห็นการเปลี่ยนแปลงของการใช้ไอทีมากขึ้น ตอนนั้นก็อยู่ในยุคอุตสาหกรรม 3.0 ที่เป็นยุคของไอที และกำลังเข้าสู่ช่วงของ Mobile First มีการเข้ามาของสื่อสังคมออนไลน์อย่าง Facebook การใช้มือถือเพื่อการสื่อสารก็เปลี่ยนจากการส่ง SMS หรือ MMS มาสู่การใช้มือถือเพื่อเล่นเว็บ เล่นโมบายแอปพลิเคชั่นต่างๆ โลกการพัฒนาโปรแกรมก็เริ่มเปลี่ยนเป็นการเชื่อมต่อระบบต่างๆเข้าหากันผ่าน Service Oriented Platform (SOA) หลักการพัฒนาโปรแกรมก็เปลี่ยนไปมากขึ้น และก็เริ่มเข้าสู่ยุคแรกๆของ Cloud Computing เริ่มเห็นการเข้ามาของ Cloud Virtual Server หรือ  Cloud Storage

หลังจากนั้นผมเองก็มีโอกาสเข้าไปทำงานที่เขตอุตสาหกรรมซอฟต์แวร์ประเทศไทย และมาทำงานกับสถาบันไอเอ็มซี ซึ่งกำลังเข้ามาสู่ยุคอุตสาหกรรม 4.0 ที่จะเริ่มเห็นการเปลี่ยนแปลงของเทคโนโลยีไปอย่างมาก มีเรื่องของ  Big Data, AI, IoT หรือ Blockchain เข้ามา ผู้คนหันมาใช้ไอทีและกลายเป็นเรื่องปกติ ไอทีกับองค์กรและสังคมเริ่มเป็นเรื่องเดียวกัน พฤติกรรมของผู้คนก็เปลี่ยนแปลงไปตามเทคโนโลยีและเริ่มเห็นกระแสของ Digital Disruption ที่กำลังทำให้อุตสาหกรรมหรือธุรกิจแบบเดิมล้มหายตายจากไป เพราะการเปลี่ยนแปลงพฤติกรรมของผู้บริโภค จากที่ไอทีเคยเป็นเพียงงานหลังบ้านสนับสนุนให้ธุรกิจทำงานได้ดีขึ้น กลายเป็นว่าไอทีเป็นเครื่องมือขับเคลื่อนทำให้เกิดธุรกิจใหม่ๆ ผลิตภัณฑ์หรือบริการใหม่ๆ และองค์กรส่วนใหญ่ก็จะเริ่มให้ความสำคัญกับเรื่ิอง Digital Transformation มีการพูดถึงกลยุทธ์ในด้านดิจิทัล การพัฒนากำลังคน การปรับเปลี่ยนองค์กรให้รองรับกระแสดิจิทัล และมีการผลักดันเป็นนโยบายประเทศอย่าง Thailand 4.0

ภาพของความเป็นคนไอทีที่แต่ก่อนเป็นเรื่องที่เคยดูแตกต่างจากกลยุทธ์ธุรกิจและเกี่ยวข้องกับสังคมไม่มากนัก ก็กลายเป็นว่าองค์กรและคนนอกวงการไอทีให้ความสนใจเกี่ยวกับเทคโนโลยีมากยิ่งขึ้น ตัวผมเองเลยต้องมีส่วนไปช่วยให้คำแนะนำหน่วยงานต่างๆเรื่องแนวโน้มของเทคโนโลยี การวางกลยุทธ์องค์กร การทำ Digital Transformation หรือแม้แต่ให้เข้าไปช่วยในการพัฒนาระบบ Big Data  และก็มีโอกาสได้เข้าไปทำงานเป็นบอร์ดและกรรมการอิสระในองคกร์ต่างทั้งภาครัฐและเอกชน ก็ยิ่งทำให้เข้าใจการเปลี่ยนแปลงของธุรกิจและสังคมดีขึ้น

หนังสือเล่มนี้เลยได้รวมรวมบทความและข้อเขียนต่างๆที่ผมลงในหนังสือพิมพ์กรุงเทพธุรกิจและ Business Today รวมถึงในบล็อกส่วนตัว thanachart.org ในรอบปีที่ผ่านมา โดยมีจุดประสงค์เพื่อให้เข้าใจกระแสของ Digital Disruption และการทำ  Digital Transformation แนวโน้มของเทคโนโลยีต่างๆ รวมถึงการเปลี่ยนแปลงวิถีชีวิตและการทำงาน ซึ่งก็หวังว่าน่าจะเป็นประโยชน์กับผู้อ่านในการที่จะเข้ากระแสการเปลี่ยนแปลงของโลกได้ดีขึ้น

ธนชาติ นุ่มนนท์

IMC Institute

เมื่อเทคโนโลยีทำให้คนชอบอ่านหนังสือ Gen X เปลี่ยนไป แต่เนื้อหา (Content) ดีๆยังไม่มีวันตาย

IT Trend2020

สมัยเรียนชั้นประถมต้นทุกเช้าผมจะตั้งหน้าตั้งตารอรถมอเตอร์ไซค์มาส่งหนังสิอพิมพ์ที่บ้าน และวิ่งไปรับด้วยความดีใจเมื่อหนังสือพิมพ์มาถึง ผมชอบตามข่าวฟุดบอลอังกฤษแต่สมัยนั้นไม่มีการถ่ายทอดกีฬาฟุตบอลสดๆไม่มีอินเตอร์เน็ตและคนไทยก็ยังไม่นิยมดูฟุตบอลต่างประเทศเหมือนในปัจจุบัน เมื่อได้หนังสิอพิมพ์มาผมก็จะต้องรีบเปิดดูข่าวกีฬาในหนังสือพิมพ์ Bangkok Post ที่อยู่หน้าสุดท้ายเป็นอย่างแรก เพื่อจะลุ้นดูผลบอลอังกฤษด้วยความตื่นเต้นว่าเมื่อคืนใครชนะ ข่าวในหน้าหนังสือพิมพ์เป็นช่องทางหลักที่สำคัญในยุคนั้นที่ทำให้เราทราบและติดตามความเคลื่อนไหวต่างๆในแต่ละวัน มีหนังสือพิมพ์หลายฉบับที่ได้อ่านในยุคนั้นไม่ว่าจะเป็น ไทยรัฐ บ้านเมือง เดลินิวส์ สยามรัฐ หรือ Bangkok Post

พอผมย้ายมาอยู่นครปฐมตั้งแต่ช้นประถมปลายที่บ้านเปิดร้านขายหนังสือ คุณพ่อและแม่ก็จะมีการบ้านให้เอาหนังสือมาอ่านในแต่ละสัปดาห์และต้องสรุปส่งให้ บางทีก็อ่านหนังสือประวัติศาสตร์การเมืองต่างๆทำให้เป็นคนชื่นชอบกับการอ่านหนังสือมากขึ้น เมื่อขึ้นสู่ชั้นมัธยมศึกษาความสุขเล็กๆน้อยๆของนักเรียนอย่างผมก็เริ่มต้นจากที่ตามคุณแม่ที่ไปค้นเอกสารที่ กองจดหมายเหตุแห่งชาติ ทำให้เรามีโอกาสเข้าไปอ่านและค้นหนังสือที่ หอสมุดแห่งชาติ ท่าวาสุกรี ตอนหลังก็เริ่มนั่งรถเมล์ไปเองจากนครปฐมเพื่อไปอ่านหนังสือพิมพ์เก่าๆย้อนหลังเป็นสิบๆปี บางทีอยู่ที่หอสมุดแห่งชาติได้ทั้งวัน หรือบางครั้งก็ไปเดินดูหนังสือที่ ร้านดวงกมล ตรงสยามสแควร์ ไปยืนเลือกดูหนังสือได้เป็นชั่วโมง อุปนิสัยนี้ที่ได้มาก็เพราะพ่อกับแม่ชอบพาไปร้านหนังสือตามที่ต่างๆ

 

50102461

รูปที่  1 Encyclopedia Britannica ปี 1967

ความสุขอีกอย่างหนึ่งของเด็กนักเรียนอย่างผมก็คือการได้อ่าน Encyclopedia Britannica ที่พ่อซื้อมาชุดใหญ่ตั้งแต่สมัยทำงาน BBC ที่อังกฤษ แม้จะเป็นรุ่นตั้งแต่ปี 1967 แต่มันก็เป็นคลังความรู้ชั้นดีของผม และมันก็ทำให้ผมสนใจดูข้อมูลสถิติต่างๆ อยากเห็นตัวเลขอะไรสารพัดโดยเฉพาะสถิติกีฬาต่างๆในอดีต เวลาเข้าห้องสมุดหรือร้านหนังสือบางทีผมก็จะรีบไปดูหนังสือภาษาอังกฤษที่เป็น World Almanac สรุปสถิติต่างๆ จำได้ว่าแม้แต่พี่ชายตอนกลับมาจากต่างประเทศในสมัยนั้นยังซื้อหนังสือ Sport Almanac มาฝากแทนที่จะซื้ออย่างอื่น

ตอนเข้าเรียน มหาวิทยาลัยขอนแก่น ก็เริ่มสนใจอ่านอ่านนิตยสารวิเคราะห์การเมืองอย่าง อาทิตย์รายสัปดาห์  และหนังสือการเมืองต่างๆ นอกจากนี้ผมก็ยังชอบเข้าไปยืมและหาหนังสืออ่านในห้องสมุดของมหาวิทยาลัย ยุคนั้นยังไม่มีคอมพิวเตอร์และการอ่านข่าวก็ต้องพึ่งจากหนังสือพิมพ์หรือนิตยสารที่อยู่ในห้องสมุด และก็ชอบเมื่อมีโอกาสเข้าเมืองก็จะไปดูหนังสือที่ ร้านหนังสืออาเข่ง แถวตลาดโต้รุ่ง ที่สมัยนั้นมีหนังสือให้เลือกมากมาย และเมื่อมีโอกาสกลับเข้ากรุงเทพ สถานที่ซึ่งเลือกจะไปเยี่ยมก็คือร้านหนังสือต่างๆ ไม่ใช่ศูนย์การค้าหรือร้านกาแฟ โดยเฉพาะร้านหนังสือต่างๆบริเวณสยามสแควร์ หรือแม้แต่แว๊บนั่งรถเมล์เข้าไปค้นหนังสือเก่าๆในหอสมุดแห่งชาติ

อุปนิสัยนี้ติดตัวมาจนเข้าทำงานและเรียนต่อประเทศ ผมก็จะเลือกไปดูหนังสือตามห้องสมุด ตามร้านหนังสือ ในต่างประเทศ จำได้ว่าตอนเรียนต่อปริญญาโทและเอกที่  University of Auckland  ประเทศนิวซีแลนด์ ผมก็ไปห้องสมุดของมหาวิทยาลัยหาหนังสือพิมพ์ไทยอ่านที่อาจเป็นหนังสือพิมพ์เก่าย้อนหลัง 2-3 สัปดาห์อ่าน เพราะเป็นช่องทางเดียวที่จะทราบข่าวเมืองไทยในยุคที่ยังไม่มีอินเตอร์เน็ต แม้แต่ตอนไปทำงานในต่างประเทศบางครั้งมีเวลาว่างผมยังเลือกที่จะไปร้านหนังสือมากกว่าทีอื่น จำได้ว่าครั้งหนึ่งมีเวลาแค่วันเดียวในเมือง Toronto ประเทศแคนาดา ผมเลือกที่ไปดูหนังสือที่ร้าน Barnes and Nobles และอยู่ที่นั้น 4-5 ชั่วโมง มากกว่าที่จะไปเที่ยวที่อื่นๆ หรือแม้แต่ตอนทำงาน Sun Microsystems ที่ช่วงหนึ่งต้องไปประชุมที่สิงคโปร์บ่อยๆผมก็จะต้องแวะไปดูหนังสือที่ร้าน Computer Book Center ในห้าง Funan Digital IT Mall  ทุกครั้งที่มีโอกาส ซึ่งร้านมีหนังสือคอมพิวเตอร์ให้ผมเลือกมากมาย ยืนดูได้เป็นชั่วโมง

แต่ทุกวันนี้ ข่าวในหน้าหนังสือพิมพ์ได้ตายจากผมไปแล้ว ผมไม่เคยตื่นเต้นต้องมารอคนมาส่งหนังสือพิมพ์เหมือนเดิมแล้ว โลกโซเชียลทำให้ผมทราบข่าวตรงจากผู้สื่อข่าวจากสนามข่าวผ่าน Tweeter หรือออนไลน์ต่างๆ ข่าวที่ลงในหนังสือพิมพ์เป็นข่าวที่ทราบมาก่อนแล้ว หนังสือพิมพ์วันนี้ผมเน้นที่จะอ่านบทความ บทวิเคราะห์  ผมยังซื้อหนังสือพิมพ์อยู่แต่ไม่ใช่เป็นกระดาษแบบเดิมแล้ว เลิกรับแบบเดิมมานับสิบปีแล้ว เมื่อสิบปีก่อนผมก็เริ่มซื้อหนังสือพิมพ์ โพสต์ทูเดย์ โดยตรงจาก App Store ฉบับที่เป็น e-Book ทุกวัน (แต่จ่ายเป็นรายเดือน) หลังจากนั้นก็มารับหนังสือพิมพ์และนิตยสารแบบบุฟเฟ่ต์ของ OokBee อ่านในรูปแบบของ e-Book อยู่หลายปี จนหนังสือพิมพ์หรือนิตยสารที่เคยอ่านในนั้นทยอยปิดตัวไปเรื่อยๆ จากที่เคยได้อ่านหนังสือพิมพ์วันละ 4-5 ฉบับทยอยปิดตัวไปเรื่อยๆจนกระทั่งไม่มีหนังสือพิมพ์หรือนิตยสารที่ผมอยากอ่านเหลืออยู่เลย จนสุดท้ายก็ต้องหันกลับมารับฉบับออนไลน์โดยตรงกับเจ้าของสำนักพิมพ์คือ กรุงเทพธุรกิจ และล่าสุดก็สมัครเป็นสมาชิกหนังสือพิมพ์ Business Today  ใช่ครับคนกลางที่เป็นแผงหนังสือหรือคนส่งหนังสือพิมพ์กำลังหายไปแล้ว

ร้านหนังสือที่เคยไปยืนเลือกดูหนังสือเป็นชั่วโมงๆ ก็เริ่มหายไปแล้ว หนังสือดีๆที่น่าอ่านก็มีให้เลือกน้อยลง ไปร้านหนังสือวันนี้แทบไม่มีนิตยสารให้เลือก หนังสือตามชั้นก็เน้นเรื่องธุรกิจ การเล่นหุ้น หรือวิธีการรวยทางลัด นอกนั้นก็อาจเป็นหนังสือท่องเที่ยว ส่วนหนังสือคอมพิวเตอร์ ประวัติศาสตร์ สังคมก็น้อยลงไปเรื่อยๆ ผมยังไปนั่งทานกาแฟแถวร้านหนังสือที่ Think Space B2S ซึ่งเป็นร้านขนาดใหญ่ตรง Central EastVille และก็ไปทานกาแฟที่ร้านหนังสือบริเวณ Open House ตรง Central Embassy แต่ก็มีหนังสือน้อยเล่มที่ให้เลือกซื้อ

72698843_394940214791098_7983564778368925696_n

รูปที่  2 ตัวอย่างหนังสือใน Kindle App ของผม

ร้านหนังสือผมกลายเป็นว่ามาอยู่ในโลกออนไลน์ ถ้าอยากจะได้หนังสือดีๆก็ต้องซื้อตรงจาก Amazon.com  อ่านผ่าน Kindle App แถมบางเล่มยังสามารถซื้อไฟล์เสียงได้ แล้วก็สั่งด้วยเสียงของเราเปิดฟังอัตโนมัติผ่าน Amazon Echo ในยามที่ต้องการได้ หนังสือก็มีให้เลือกมากมายไม่จำกัด แถมยังมีเนื้อหายังใหม่ๆตลอดเวลา ส่วนร้านหนังสือคอมพิวเตอร์ของผมก็ย้ายมาอยู่ที่ Safari Book Online มีหนังสือด้านเทคโนโลยีให้ผมเลือกอ่านเป็นพันๆเล่ม ผมจ่ายเป็นรายปีอ่านแบบไม่จำกัด แถมยังมีวิดีโอหลักสูตรคอมพิวเตอร์ต่างๆให้ผมเรียน ที่สำคัญสุดหนังสือเทคโนโลยีเหล่านี้ใหม่มากๆบางทีผู้เขียนยังเขียนเสร็จไม่ครบทุกบทยังไม่ตีพิมพ์เป็นเล่มขายแต่ผมก็ได้อ่าน E-Book ที่เป็น Early Edition หรือ Pre-Print แล้ว

72578371_2459527324155471_8548084280343920640_n

รูปที่  3 ตัวอย่างหนังสือที่ผมอ่านใน Safari Book Online

Encyclopedia ก็กลายเป็น Wikipedia หรือ Google แม้อินเตอร์เน็ตจะมีข้อมูลมากมาย หลายแหล่งอาจไม่ถูกต้อง แต่ด้วยความโชคดีที่ได้ฝึกทักษะในการอ่าน ในการค้นข้อมูล สรุปย่อความและคิดวิเคราะห์ตั้งแต่เด็ก ก็เลยพอมั่นใจตัวเองได้ในระดับหนึ่งว่ามีหลักการในการหาข้อมูลที่พอเชื่อถือได้ จากทักษะตั้งแต่ในยุคอนาล็อกนั้นละครับ ไม่ใช่ประเภทตามกระแสโซเชียลที่กด Click, Like และ Share

ล่าสุดผมเห็นข่าวงานสัปดาห์หนังสือแห่งชาติในปีนี้ คนเริ่มเงียบเหงาลง มีคำถามว่าหนังสือก็ตายแล้วหรอ สำหรับผมเนื้อหา (Content) ยังไม่มีวันตาย เผลอๆในโลกยุคปัจจุบันผู้คนต้องการบริโภคเนื้อหาทีถูกต้องและแม่นยำกว่าเดิม คนที่ต้องการเนื้อหาดีๆยังต้องจ่ายเงินแต่ช่องทางอาจเปลี่ยนไปแล้ว อาจไม่ใช่เป็นกระดาษเป็นเล่มแบบเดิม แต่อาจเป็นการซื้อบนโลกออนไลน์ แบบทันทีทันใด อ่านจากอุปกรณ์ไหนก็ได้ และเนื้อหาต้องทันสมัย สำคัญสุดวันนี้ถ้าเราอยากให้ลูกหลานเราอ่านเนื้อหาดีๆ ภาษาอังกฤษพวกเขาต้องเก่ง เพราะมีเนื้อหามากมายในโลกออนไลน์ ที่จะรอแปลมาเป็นไทยก็อาจไม่ทันโลกแล้ว และสำคัญสุดในยุคเทคโนโลยีดิจิทัลเราต้องสอนให้เด็กรุ่นใหม่ ค้นข้อมูล และคิดเชิงวิเคราะห์ให้ได้ว่าข้อมูลไหนถูกต้อง ไม่ใช่แค่สอนการใช้กูเกิ้ล

ธนชาติ นุ่มนนท์

IMC Institute