Hybrid Cloud Computing แนวโน้มของระบบไอที

Screenshot 2018-10-14 13.55.59

สัปดาห์ที่ผ่านมา (9-11 ตุลาคม 2018) ทีมงาน IMC Institute  พาผู้เข้าอบรม 16 ท่านไปดูงาน Cloud Expo Asia 2018 ที่ประเทศสิงคโปร์ โดยนับเป็นปีที่ 5 ที่ทางเราพาผู้เข้าอบรมไป ซึ่งนอกเหนือจากการเข้าชมงานก็ยังได้พาผู้เข้าอบรมไปเยียมชมบริษัท Oracle ด้วย

43462155_1228836723930332_1337121326103527424_n

สำหรับในปีนี้ทางผมเองได้เข้าไปร่วมบรรยายในงานนี้ด้วยในหัวข้อ Hybrid Cloud Strategies Drive Demand for Colocation ซึ่งผู้สนใจสามารถดูสไลด์การบรรยายของผมได้ที่ https://tinyurl.com/hybrid-cloud-imc โดยในการบรรยายนี้ผมได้กล่าวนำให้เห็นว่าจากการมาเยียมชมงาน Cloud Expo Asia ต่อเนื่องมาทุกปี ได้เห็นการเปลี่ยนแปลงของงานจากเดิมที่ปีแรกๆจะเน้นที่ ผู้ให้บริการ Public cloud ค่ายต่างๆอย่าง  Amazon, Google, Micrsoft มาออกงาน ในปีหลังๆก็จะเห็นเน้นไปที่การทำโซลูชั่นอย่าง IoT, Big Data หรือ AI โดยใช้ Cloud Computing มากขึ้น และในปัจจุบันก็เน้นไปที่การทำ Multi-cloud มากขึ้น ซึ่งก็สอดคล้องกับผลสำรวจของ Rightscale ปีล่าสุดที่ชี้ให้เห็นว่า ระบบไอทีในองค์กรต่างๆจะเป็น  Multi-cloud  มากขึ้น โดยมีแนวโน้มที่จะเป็น Hybrid cloud มากกว่าที่จะเป็น Multiple public cloud หรือ   Multiple private cloud ดังแสดงในรูปที่ 1 นอกจากนี้ก็ยังพบว่าจากการสำรวจผู้ใช้ทั่วโลกเกือบ 1000 ราย เกือบ 96% จะใช้ Cloud computing  ในปัจจุบันโดยเกือบ 71% จะตอบว่าจะใช้  Hybrid cloud ดังแสดงในรูปที่ 2

Screenshot 2018-10-14 14.09.25

รูปที่ 1 ผลการสำรวจการใช้  Cloud ขององค์กรขนาดใหญ่  [จาก RightScale]

Screenshot 2018-10-14 14.14.55

รูปที่ 2 ผลการสำรวจการใช้  Cloud   [จาก RightScale]

แม้ Public cloud รายใหญ่ๆจะมีประโยชน์ในด้านเงินลงทุนที่ค่อนข้างต่ำ เพราะเป็นการคิดค่าใช้จ่ายตามการใช้งาน และยังมีจุดเด่นที่มีบริการใหม่ๆมากมายอาทิเช่นด้าน  Big data, IoT หรือ AI ที่จะทำให้หน่วยงานพัฒนาระบบไอทีใหม่ๆได้รวดเร็วขึ้น แต่เมื่อมีการใช้งานมากๆค่าใช้จ่ายก็อาจสูงขึ้นกว่าการพัฒนาระบบ Private cloud เองหรือสูงกว่าการใช้ On-premise นอกจากนี้ก็อาจมีปัญหาเรื่องความปลอดภัยหรือด้าน Compliance ประเด็นที่สำคัญอีกด้านก็คืออาจเจอปัญหาเรื่อง  Vendor Lock-in

ดังนั้นจึงเป็นไปได้ยากที่องค์กรจะใช้เฉพาะ  Public cloud และแนวโน้มด้านไอทีเราคงจะต้องเห็นการผสมผสานกันระหว่างการใช้ Private cloud หรือระบบ  On-premise กับการใช้ Public cloud โดยเราอาจแบ่งระบบไอทีขององค์กรได้เป็นสองกลุ่ม

  • กลุ่มที่ 1 ระบบ Application ดั้งเดิม หรือระบบที่มีความสำคัญยิ่งยวด รวมถึงระบบ Core ขององค์กร ซึงพวกนี้ก็จะเป็นกลุ่มที่ใช้ Private cloud/On-premise
  • กลุ่มที่ 2 ระบบ Application ใหม่ๆ ที่ต้องการความรวดเร็วในการพัฒนา หรือที่ใช้เทคโนโลยีใหม่ๆในการพัฒนา กลุ่มพวกนี้จะใช้ Public cloud

ซึ่งองค์กรสามารถที่จะดูแลระบบไอทีทั้งสองนี้ในรูปแบบของ Bi-model IT กล่าวคือทั้งสองระบบจะแยกกันอยู่ หรือจะเป็น  Single infrastructure ก็ได้ โดยในรูปแบบหลังจะมีผลดีกว่าเพราะสามารถจะย้าย  workload ต่างๆได้ง่ายขึ้น โดยทั้งสองระบบจะเชื่อมต่อผ่าน VPN ดังรูปที่ 3

Screenshot 2018-10-14 14.31.25.png

รูปที่ 3 Hybrid Cloud Model

ทั้งนี้เราสามารถใช้  Hybrid Cloud ได้หลายรูปแบบอาทิเช่น

  • Isolated use cases คือการวางระบบ  Application ที่ต่างกันแยกในส่วนของ Private หรือ  Public cloud ที่ต่างกัน
  • Coexisting use cases  คือการที่เราอาจเอา Application เดียวกันมาติดตั้งไว้ในทั้ง Private และ Public cloud  เช่นกรณีของ  Cloud bursting ที่เราจะใช้ Private cloud สำหรับกรณีของ Fixed load แล้วในช่วงของ Peak load ก็ขยายไปใช้ Public cloud หรือกรณีของ Big data  ที่อาจมีข้อมูลเก็บไว้ในทั้งสองระบบ และเมื่อต้องการประมวลผลข้อมูลขนาดใหญ่ก็อาจไปใช้ Public cloud
  • Supporting application use cases  คือตัวอย่างของการพัฒนา Applicationใหม่ๆที่อาจต้องการใช้เครื่องมือใน Public cloud เช่นการใช้ Machine learning

การพัฒนาระบบขององค์กรสู่ Hybrid cloud จะมีขั้นตอนสำคัญที่ต้องพิจารณาคือ

  1. วางแผนระบบ  Application ต่างๆว่าระบบใดเหมาะกับ  Cloud โมเดลแบบไหน เช่น Private, Public หรือ  On-Premise
  2. ต้องพยายามเลือก Cloud Framework หนึ่งเดียวเพื่อลดความวุ่นวายในการดูแลลหลายระบบ อาทิเช่นอาจต้องตัดสินใจเลือก  VMWare, OpenStack, Azure stack หรือ ระบบอื่นๆ
  3. ต้องปรับเปลี่ยนระบบไอทีในองค์กรที่เป็น On-premise ให้เป็นระบบที่ทันสมัย โดยอาจเป็น Private cloud โดยต้องยึดกับ Framework ที่เลือกไว้
  4. พยายามเลือก Public cloud หรือ Cloud service provide ที่มี Framework ตามที่เลือกไว้และทำการเชื่อมต่อกับ Private cloud ผ่าน  VPN

ทั้งหมดก็เป็นการสรุปการบรรยายของผมสั้นๆที่กล่าวในงานดังกล่าว

ธนชาติ นุ่มนนท์

IMC Institute

การวิเคราะห์ Big Data กับสิทธิของข้อมูลส่วนบุคคล

Screenshot 2018-08-05 11.29.12

เมื่อวันศุกร์ที่ผ่านมาผมมีโอกาสได้ไปบรรยายในงานครบรอบ 10 ปีสถาบันคุ้มครองเงินฝากในหัวข้อเรื่อง Digital Disruptive Technology in Financial Services โดยได้ชี้เห็นว่าเทคโนโลยีที่กำลังเข้ามามีผลกระทบกับอุตสาหกรรมการเงินอย่างมากที่สุดอย่างหนึ่งก็คือ Big data analytics  สิ่งที่น่าสนใจก็คือว่า การที่เรานำเงินไปฝากไว้กับสถาบันการเงิน ไม่เพียงแต่จะมีเงินที่เข้ามาฝากไว้ที่สถาบันการเงิน แต่ยังมีข้อมูลต่างๆอีกเป็นจำนวนมาก อาทิเช่น ข้อมูลรายละเอียดส่วนบุคคล (ชื่อ,  ที่อยู่, อายุ, สถานที่ทำงาน), ข้อมูลด้านการเงิน (เงินฝาก, เงินกู้, รายได้, รายจ่าย) หรือข้อมูลธุรกรรมการเงินต่างๆอีกมากมาย ก็เลยอยากตั้งคำถามว่า ข้อมูลเหล่านี้เป็นของใคร ของลูกค้าหรือของสถาบันการเงิน

Screenshot 2018-08-05 12.59.06

บางท่านอาจเข้าใจว่าเป็นของสถาบันการเงิน ผมอยากให้ลองคิดถึงข้อมูลทางการแพทย์โดยเฉพาะข้อมูลการรักษาพยาบาลของเรา ข้อมูลเหล่านั้นเป็นของโรงพยาบาล,ของเราหรือของรัฐบาล ผมคิดว่าหลายๆคนคงตอบว่า เป็นข้อมูลส่วนบุคคลของเรา เราคงไม่ยินยอมถ้าทางโรงพยาบาลหรือแพทย์จะเอาข้อมูลเหล่านั้นไปทำ Big Data Analytics มาทำการวิเคราะห์หรือคาดการณ์อะไรต่างๆกับตัวเราโดยที่เราไม่ทราบล่วงหน้า หากโรงพยาบาลอยู่ๆจะนำประวัติการรักษาของเรามาวิเคราะห์และมาคาดการณ์ว่าเราจะเป็นโรคนั้นโรคนี้โดยที่เราไม่ได้อนุญาตล่วงหน้าเราคงไม่ยินดี และถือว่าเป็นการละเมิดสิทธิส่วนบุคคลอย่างมาก ดังนั้นการวิเคราะห์ข้อมูลในวงการแพทย์จะต้องไม่สามารถที่จะสืบกลับมาได้ว่าเป็นข้อมูลของใคร และถ้าเป็นการคาดการณ์เรื่องของโรคร้ายต่างๆก็น่าจะเป็นการวิเคราะห์ภาพรวม ยกเว้นเสียแต่ว่าคนไข้จะยินยอมให้ใช้ข้อมูลส่วนบุคคลไปวิเคราะห์หรือทำ  Predictive analytics กับคนไข้เฉพาะราย

big-data-analytics-banking-industry-video

เช่นกันโดยหลักการข้อมูลที่อยู่สถาบันการเงินก็น่าจะเป็นข้อมูลของลูกค้า โดยหลักการสถาบันการเงินก็ไม่น่าที่จะมีสิทธิเอาข้อมูลลูกค้ามาวิเคราะห์เป็นรายบุคคลโดยไม่ขออนุญาตว่าจะทำการวิเคราะห์อะไร ไม่ควรที่จะมาวิเคราะห์ว่า

  • ลูกค้ามีรายได้เท่าไร มีเงินเพียงพอหรือไม่
  • ลูกค้าต้องการจะกู้ยืมหรือไม่
  • ลูกค้ามีรายจ่ายอย่างไร ซื้อบ้านกี่หลัง ผ่อนรถกี่คน
  • ลูกค้าไปใช้จ่ายเงินอย่างไร ประเภทใด ร้านค้าใด
  • ลูกค้าชำระค่าน้ำ ค่าไฟ ค่าโทรศัพท์เดือนเท่าไร
  • ลูกค้าเดินทางไปต่างประเทศบ่อยไหม

ข้อมูลเหล่านี้เป็นข้อมูลส่วนบุคคล ถ้าลูกค้าไม่ได้ร้องขอสินเชื่อให้ทำการวิเคราะห์ สถาบันการเงินก็ไม่สมควรที่จะนำไปทำการวิเคราะห์โดยไม่ได้รับความยินยอมจากลูกค้า หรืออยู่ดีๆจะมาแนะนำว่าผลการวิเคราะห์ลูกค้าใช้จ่ายอย่างไร จะต้องการกู้ยืมเงินไหมเพราะคิดว่าเรามีรายได้ไม่พอใช้

บางท่านอาจแย้งว่าลูกค้าได้เคย  consent อนุญาตให้ใช้ข้อมูลตั้งแต่เปิดบัญชีแล้ว จริงๆแล้วการ  consent น่าจะเป็นการใช้ข้อมูลโดยทั่วไป และไม่เคยมีการบอกมาชัดเจนว่าจะนำไปใช้อะไร ทำให้นึกถึงกรณีกฎระเบียบด้านข้อมูลอันใหม่ของ EU เรื่อง General Data Protection Regulation (GDPR) ได้เขียนไว้ชัดว่าข้อมูลต่างๆเหล่านี้เป็นของประชาชนและย่อมมีสิทธิที่จะทราบว่าผู้เก็บข้อมูลจะเอาไปทำอะไร แม้แต่การ Consent: ที่ต้องขอความยินยอมจากเจ้าของข้อมูลต้องเข้าใจง่าย และต้องระบุอย่างชัดเจนว่าจะนำข้อมูลไปใช้ทำอะไร เพื่อวัตถุประสงค์ใด หรือสิทธิของเจ้าของข้อมูล (ประชาชน) ที่จะขอดูข้อมูล ขอให้ลบและเคลื่อนย้าย

ข้อมูลที่เราเก็บไว้ในสถาบันการเงิน แตกต่างกับข้อมูลใน Social media อย่าง Facebook หรือ  Google พวก Social media เหล่านั้นลูกค้ามีสิทธิที่จะให้หรือไม่ให้ข้อมูลก็ได้ จะบอกที่อยู่ อายุ ชื่อจริง หรือเบอร์มือถือหรือไม่ก็ได้ แต่ข้อมูลที่อยู่กับสถาบันการเงินลูกค้าต้องใช้ข้อมูลจริง และเป็นข้อมูลส่วนบุคคลด้านการเงิน ที่สถาบันการเงินเก็บไว้ ซึ่งถือว่าเป็นข้อมูลที่สำคัญยิ่งและมีความอ่อนไหว (sentitive data) ไม่ควรต่อการให้ใครก็ได้นำมาวิเคราะห์ต่างๆโดยไม่ได้รับอนุญาต แต่เดิมลูกค้าอาจไม่เคยเห็นความสำคัญของข้อมูลเหล่านี้แต่ในปัจจุบันเราเริ่มเห็นกันแล้วว่าสินทรัพย์ที่สำคัญอีกอย่างหนึ่งที่เราฝากไว้กับสถาบันการเงินนอกเหนือจากตัวเงินก็คือข้อมูล เรามีสถาบันคุ้มครองเงินฝากของเรา แล้วใครละจะมาคุ้มครองข้อมูลของเราไม่ให้ถูกละเมิด

ธนชาติ นุ่มนนท์

IMC Institute

 

ขั้นตอนการทำโครงการ Big Data

Screenshot 2018-05-03 16.00.42

คำว่า Big Data กำลังเป็นศัพท์เทคนิคที่น่าสนใจในมุมของผู้บริหารองค์กรหลายๆแห่งทั้งภาครัฐและเอกชน ซึ่งนอกจากว่าผู้บริหารจำนวนหนึ่งจะมาใช้เป็นศัพท์ในการตลาดแล้วบางครั้งก็ทำให้ราวเหมือนกับว่ามันจะเป็นเทคโนโลยีวิเศษที่จะสร้างประโยชน์ให้กับองค์กรอย่างมากมาย

มีคนเคยบอกความหมายของคำว่า Big data ในเชิงคบขำไว้ว่า “Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, so everyone claims they are doing it... ”  (Prof. Dan Ariely ) คำพูดก็คล้ายกับที่ประเทศเราในตอนนี้ที่ทุกคนต่างก็พูดถึง Big Data บางทีข้อมูลเล็กนิดเดียวก็บอกว่าทำ Big Data บางครั้งก็สั่งงานให้ฝ่ายเทคโนโลยสารสนเทศไปเริ่มทำโครงการ Big Data ทั้งๆที่ Big Data น่าจะเริ่มจากกลยุทธ์ไม่ใช่เริ่มที่เทคโนโลยี แล้วบางคนก็บอกว่าทำโครงการ Big Data  เสร็จแล้ว

Untitled (1)

รูปที่ 1 ขั้นตอนการทำโครงการ Big Data

เมื่อวันก่อนผมมีโอกาสเขียนรูปภาพแสดงขั้นตอนง่ายๆให้เห็นว่าเราจะเริ่มทำโครงการ Big Data ได้อย่างไร  โดยมีขั้นตอนดังแสดงในรูปที่ 1

โครงการ  Big Data ต้องเริ่มต้นด้วยการทำกลยุทธ์ข้อมูล (Data strategy) ที่ผู้บริหารหน่วยงานต่างๆในองค์กรมากำหนดร่วมกัน ซึ่งกลยุทธ์ที่ดีไม่ได้ดูที่ว่ามีข้อมูลอะไรอยู่ในองค์กร แต่อยู่ที่ว่าธุรกิจมีเป้าหมายอะไร และข้อมูลใดที่จะช่วยให้บรรลุเป้าหมายนั้น

ซึ่งเมื่อได้กลยุทธ์แล้วเราจะเริ่มเข้าใจได้ว่าลักษณะข้อมูลที่ต้องการใช้เป็นอย่างไร ทั้งนี้ข้อมูลที่ต้องการจะนำมาใช้อาจแบ่งเป็นสองกลุ่มคือ

  • ข้อมูลที่มีอยู่ในปัจจุบันอยู่แล้ว แต่เราไม่เคยนำมาวิเคราะห์ ข้อมูลลักษณะนี้เราเรียกว่า Dark data ซึ่งก็อาจเป็นข้อมูลขนาดใหญ่ในองค์กร
  • ข้อมูลที่ยังไม่มี แต่คิดว่าน่าจะเป็นประโยชน์ ทั้งนี้อาจต้องไปหาข้อมูลเหล่านี้มาจากแหล่งอื่นๆเช่น พันธมิตร หรืออาจต้องซื้อข้อมูล บางครั้งอาจต้องหาเทคโนโลยีเช่น IoT เข้ามาช่วยในการเก็บซึ่งอาจต้องใช้เวลากว่าจะสะสมหรือหาข้อมูลได้

หากกลยุทธ์ต้องการข้อมูลกลุ่มหลังก็อาจต้องใช้เวลากว่าที่จะเริ่มทำโครงการได้ หรือบางครั้งเราอาจไม่มีข้อมูลเหล่านั้นเลยก็เป็นไปได้ ซึ่งสุดท้ายเราอาจจะต้องปรับกลยุทธ์ใหม่เพื่อให้ได้ข้อมูลที่มีอยู่แล้วเพื่อความรวดเร็วในการทำโครงการ

เมื่อเรามีข้อมูลที่เพียงพอคำถามถัดมาก็คือว่า ข้อมูลเหล่านั้นเป็นไปตามนิยามของ Big data ที่ว่า Volume, Variety, Velocity, Varacity จริงหรือไม่

  • ถ้าใช่ เราก็อาจต้องลงทุนโครงสร้างพื้นฐานด้าน Big data เช่นการจัดหา Data Lake อย่าง Hadoop หรือ Cloud storage
  • ถ้าไม่ใช่ บางครั้งโครงสร้างพื้นฐานที่มีอยู่อย่าง  ระบบ Database  ที่เป็น RDBMS ก็อาจเพียงพอและไม่จำเป็นจะต้องจัดหาระบบอย่าง  Data Lake

กรณีที่ข้อมูลที่ต้องการไม่ใช่ Big Data ก็คงต้องวิเคราะห์ต่อว่า จะมีการทำ Predictive Analytic โดยการใช้ Machine Learning หรือ เพราะถ้ามี ก็อาจจำเป็นต้องจัดหาเครื่องมือในการทำเรื่องนี้มาใช้ เพราะภาษา SQL ที่ใช้กับระบบ Database ไม่สามารถจะมาใช้ทำ Predictive Analytic ได้

แต่ถ้าข้อมูลไม่ใช่ Big data มีแค่จำนวนเป็นหลักสิบล้านและไม่ได้เข้าข่ายนิยามอะไรที่เป็น Big data แลัวก็ยังไม่มีการทำ Predictive Analytic  เน้นแต่การสอบถามข้อมูล (Data query) ทำ Dashboard เป็นโครงการทำ Data warehouse และ Business Intelligence แต่ผู้บริหารอยากเรียกว่า Big data เราก็คงต้องเข้าใจว่าเป็นอย่าง Prof. Dan Ariely ว่า ก็ยอมๆไปแล้วกันครับ เพราะผู้บริหารต้องการใช้คำว่า Big data ในการตลาด

สุดท้ายถ้าเรามีข้อมูลขนาดใหญ่และต้องการทำ Predictive analytics เราก็อาจใช้ทีม Data science ที่เข้าใจ Machine learning มาช่วยงาน และอาจต้องมีการแสดงผลผ่าน Data visualisation ซึ่งเราก็จะอาจจะได้ผลลัพธ์ตามกลยุทธ์ที่กำหนดไว้ในตอนต้น แต่โครงการทั้งหมดก็ต้องใช้เวลาในการทำงาน ตั้งแต่รวบรวมข้อมูล การทำโครงสร้างพื้นฐาน และการวิเคราะห์ข้อมูล ไม่มี Quick win ในการทำโครงการ  Big data ครับ

ธนชาติ นุ่มนนท์

IMC Institute

พฤษภาคม 2561

 

 

Mini Project ในหลักสูตร Big data certification

Screenshot 2018-04-02 08.54.14

เมื่อวันเสาร์ที่ 20 มกราคม ทาง IMC Institute ได้จัดให้ผู้เรียนหลักสูตร Big Data Certification รุ่นที่ 6 ที่เรียนกันมาสี่เดือนตั้งแต่เดือนกันยายนปีที่แล้ว รวม 120 ชั่วโมง ได้มานำเสนอ Mini-project ของตัวเองโดยมีผู้นำเสนอสามกลุ่มคือ

  • กลุ่ม Anime Recommendation ที่มีการนำข้อมูลการดูการ์ตูนจำนวน 7.8 ล้านเรคอร์ดจากหนังการ์ตูน 12,294 เรื่องจาก Kaggle มาทำ Recommendation โดยใช้ ALS algorithm, ทำ Clustering โดยใช้ K-Means algorithm และมีการวิเคราะห์จำนวนการดูหนังแบบ Real-time โดยใช่ KafKa และ Spark streaming (Slide การนำเสนอสามารถดูได้ที่ >> Anime slide)
  • กลุ่ม Telecom churn analysis ที่มีการวิเคราะห์การย้ายค่ายโทรศัพท์มือถือของผู้ใช้ โดยการนำข้อมูลมาวิเคราะห์ดูลักษณะของการย้ายค่าย ทำ Visualisation แสดงผลการวิเคราะห์ต่างๆและมีการทำ  Predictive analytic โดยใช้ Decision Tree Algorithm (Slide การนำเสนอสามารถดูได้ที่ >> Telecom churn slide)
  • กลุ่ม Crime Analysis เป็นการนำข้อมูลอาชญากรรมในเมือง Chicago จำนวน 6 ล้านเรคอร์ด มาทำ Classification โดยใช้ Decision Tree Algorithm เพื่อจะวิเคราะห์ว่าอาชญกรรมกรณีไหน ในสถานการณ์และวันอย่างไร ที่มีโอกาสที่จะจับผู้ร้ายได้สูง   (Slide การนำเสนอสามารถดูได้ที่ >> Crime analysis slide)

Screenshot 2018-01-21 13.22.52

ผมพบกว่านำเสนอของทั้งสามกลุ่ม เข้าใจหลักการของการทำ Big data ได้เป็นอย่างดีตั้งแต่ การทำความเข้าใจปัญหา การเตรียมข้อมูล การใช้เทคโนโลยีและเครื่องมือต่างๆ และรวมถึงการใช้ Algorithm ในการวิเคราะห์ แต่ผัญหาที่เรามักจะเห็นมนบ้านเรากลับเป็นเรื่องของข้อมูลที่ยังมีไม่มากทำให้ขาดโอกาสที่จะใช้ความรู้ในการวิเคราะห์ข้อมูลของบ้านเรามากกว่า ซึ่งหากมีข้อมูลคนที่ผ่านหลักสูตร Big data certification เหล่านี้จำนวน 6 รุ่นแล้ว ก็น่าจะเป็นกำลังสำคัญที่เข้ามาช่วยพัฒนาการวิเคราะห์ข้อมูลขนาดใหญ่ในบ้านเราได้ในอนาคต

สำหรับ IMC Institute เราก็จะจัดงานเพื่อให้ผู้ทีผ่านการอบรมหรือบุคคลทั่วไปได้ลองมาแข่งกันทำ Mini project ในลักษณะนี้ ในโครงการที่ชื่อว่า Big data hackathon โดยตั้งใจจะจัดขึ้นในวันที่ 24-25 กุมภาพันธ์นี้ โดยไม่มีค่าใช้จ่ายใดๆ ซึ่งผู้สนใจสามารถติดต่อเข้าร่วมโครงการสามารถดูรายละเอียดการสมัครได้ที่ www.imcinstitute.com/hackathon ภายในวันที่ 16 กุมภาพันธ์ พ.ศ. 2561

ธนชาติ นุ่มนนท์

IMC Institute

มกราคม 2561

การอบรม Big Data และกิจกรรมด้านนี้ของ IMC Institute ในปี 2018

Screenshot 2018-03-24 14.05.42

IMC Institute เปิดการอบรมด้าน Emerging Technology ต่างๆทั้ง Cloud computing, Big data, Internet of things และ Blockchain มาเป็นเวลา 5 ปี ตลอดเวลาที่ผ่านมา IMC Institute ได้มีโอกาสอบรมคนทั้งหมด 14,882 คน/ครั้ง*(ผู้เข้าอบรมบางท่านอาจเข้าอบรมมากกว่าหนึ่งครั้ง) โดยแบ่งเป็นการอบรมที่เป็นหลักสูตรที่เปิดสอนทั่วไปจำนวน 308 ครั้งมีผู้เข้าอบรม 5,628  คน/ครั้ง หลักสูตรที่เป็น In-House ที่จัดให้หน่วยงานต่างๆจำนวน 195 ครั้งมีผู้เข้าอบรม 6,233  คน/ครั้ง และการอบรมแบบฟรีสัมมนาหรืองานฟรีต่างๆจำนวน 43 ครั้งมีผู้เข้าอบรม 3,021 คน/ครั้ง

ในการอบรมด้านเทคโนโลยี Big Data ทาง IMC Institute ได้เริ่มสอนหลักสูตรด้าน Hadoop ตั้งแต่เดือนมีนาคมปี 2013 และในปัจจุบันได้เปิดหลักสูตรออกมาในหลายๆหลักสูตรสำหรับหลายๆกลุ่ม ทั้งในระดับผู้บริหารอย่างหลักสูตร Big data for senior management หรือหลักสูตรสำหรับ Developer หรือ  Big Data Engineer อย่าง Big Data Architecture and Analytics Platform และ Big Data Analytics as a Service for Developer หรือ หลักสูตรสำหรับ Business Analyst อย่าง Business Intelligence Design and Process หรือ Data Visualisation Workshop รวมถึงหลักสูตรด้าน Data Science อย่าง Machine Learning for Data Science รงมถึงมีหลักสูตรที่ใช้เวลาเรียนทั้งหมด 120 ชั่วโมงอย่าง Big Data Certification Course ที่สอนไปแล้ว 6  รุ่นรวม 180 คน ซึ่งหลักสูตรด้าน Big Data ทั้งหมดของ IMC Institute แสเงไว้ดังรูป

Screenshot 2018-01-16 11.13.32

หากมองถึงจำนวนผู้เข้าอบรมหลักสูตรด้าน Big Data ทาง IMC Institute ได้จัดการอบรมไปทั้งสิ้น 182 ครั้ง แบ่งเป็นการอบรมทั่วไป 91 ครั้ง, การอบรม In-house 66 ครั้ง และงานฟรีสัมมนา/Hackaton 25 ครั้ง โดยมีผู้เข้าอบรมทั้งสิ้นรวม 5,943 คน/ครั้ง เป็นการอบรมทั่วไป 1,860 คน/ครั้ง, การอบรม In-house 2,045 คน/ครั้ง และงานฟรีสัมมนา/Hackaton 2,038 คน/ครั้ง

Screenshot 2018-01-16 11.33.35

ในช่วง 5 ปีที่ผ่านมาทาง IMC Institute ยังมีการอบรมให้กับอาจารย์ในสถาบันอุดมศึกษาลักษณะ Train the trainer หลักสูตรด้าน Big Data และ Machine Learning ปีละหนึ่งรุ่นๆละประมาณ 30 คน เพื่อให้อาจารย์นำเอาเนื้อหาและเอกสารต่างๆไปสอนกับนักศึกษาในสถาบัน โดยอบรมมาแล้ว 5 รุ่นจำนวนอาจารย์ที่มาเรียนกว่า 150 คน และเมื่อสองปีก่อนทาง IMC Institute ก็ได้จัดการอบรมในลักษณะ On the job training ให้กับนักศึกษาในมหาวิทยาลัยปี 3 และ 4 เป็นเวลาสองเดือนโดยไม่ได้คิดค่าใช้จ่ายใดๆกับนักศึกษาผู้เข้าอบรม ทาง IMC Institute ได้จัดไปแล้วสองรุ่นมีผู้ผ่านการอบรมจำนวน 26 คน ซึ่งนักศึกษาปีสี่ที่ผ่านการอบรมก็เข้าไปทำงานต่อด้าน Big Data กับบริษัทต่างๆจำนวนมากอาทิเช่น G-Able, Humanica หรือ PTG Energy

นอกจากนี้ทาง IMC Institute ก็ยังมีโครงการฟรีสัมมนาทางด้านนี้เป็นประจำทุกเดือนให้กับผู้ที่สนใจทั่วไปเข้าฟัง โดยมีหัวข้อต่างๆอาทิเช่น Big Data on Public Cloud หรือ AI Trend to Realistic cases รวมถึงการจัด Big Data Hackatonในช่วงวันเสาร์-อาทิตย์ที่ทำมาแล้ว 5 ครั้ง

สำหรับในปี 2018 ทาง IMC Institute ก็ยังเปิดหลักสูตรด้าน Big Data ต่างๆอยู่เป็นจำนวนมากและมีการปรับเนื้อหาให้ผู้เข้าอบรมสามารถเข้าไปทำงานได้จริงโดยใช้ Public cloud computing service และ Big data as a service ที่เป็นบริการบน public cloud ที่ทำให้องค์กรต่างๆสามารถเรื่มทำโครงการ Big Data ได้อย่างรวดเร็ว โดยผู้สนใจสามารถมาดูข้อมูลหลักสูตรต่างๆด้าน Big Data ได้ที่ >> Big Data Track

นอกจากนี้ยังมีโครงการอบรมต่างๆที่น่าสนใจดังนี้

  • Big Data Certification Course รุ่นที่ 7 ที่เป็นหลักสูตร 120 ชั่วโมง เรียนทุกวันพฤหัสบดีเย็นและวันเสาร์ โดยจะเปิดเรียนวันที่ 15 มีนาคม 2018
  • Big Data Hackathon  ครั้งที่ 6 โครงการฟรีให้กับบุคคลที่เคยผ่านหลักสูตรการอบรมแบบ Hands-on ของ IMC Institute โดยจะจัดเพื่อให้ผู้สนใจได้ฝึกการแก้ปัญหากับข้อมูลขนาดใหญ่โดยมีรางวัลเป็น Google Home Mini สำหรับทีมที่ชนะแกสมาชิกในทีมท่านละหนึ่ง โดยจะจัดขึ้นวันที่ 24-25 กุมภาพันธ์ 2018
  • Big Data School: On the job training รุ่นที่  3 เป็นโครงกาiฝึกงานนี้มีเป้าหมายเพื่อจะอบรมและสอนให้ผู้เข้าฝึกงานได้เรียนรู้เรื่อง Big Data Technology อย่างเข้มข้น จะทำให้ผู้เรียนมีทักษะที่จะเป็น Data Engineer, Data Analyst และสามารถต่อยอดเป็น Data Scientist ได้ ในการทำโครงการ Big Data จากการติดตั้ง Big Data Infrastructure จริง ๆ บนระบบ Cloud โดยเป็นโครงการอบรมฟรีจำนวนสองเดือนให้กับนักศึกษาปีที่ 4 หรือ 3 โดยจัดตั้งแต่วันที่ 30 พฤษภาคม – 26 กรกฎาคม 2018

หากท่านใดสนใจโครงการอบรมต่างๆเหล่านี้ก็สามารถติดต่อได้ที่ contact@imcinstitute.com หรือเบอร์มือถือ  088-192-7975, 087-593-7974

ธนชาติ นุ่มนนท์

IMC Institute

มกราคม 2561

เทคโนโลยีกำลังเข้ามาเปลี่ยนทักษะการเรียนรู้ของเด็กยุคใหม่

Screenshot 2018-01-15 11.58.07

“Hey Google, play Madagascar from Netflix on my TV.”

“OK Google,  play mr. Bean video.”

“Hey Google, Turn the fan on.”

นี่คือตัวอย่างของคำสั่งที่ลูกชายคนเล็กวัย 4 ขวบครึ่งของผมสั่งงานเปิดปิดอุปกรณ์ไฟฟ้าด้วยเสียง  ตัวเขาเองยังไม่สามารถที่จะใช้รีโมทคอนโทรลได้ และยังไม่เข้าใจปุ่มในการเปิดปิดพัดลม แต่ก็สามารถที่จะใช้งานเครื่องใช้ไฟฟ้าด้วยเสียงตามตวามต้องการของเขาได้  นอกจากนี้ในบางครั้งหากสงสัยคำศัพท์ใดเขาก็จะถาม Google Home ด้วยคำสั่งอาทิเช่น

“Hey Google how to spell cat?”

เด็กวัยนี้เกิดมาในยุคดิจิทัล (Digital native)  ไม่รู้จักอะไรหลายๆอย่างแบบที่พวกเราเคยใช้อาทิเช่นแผนที่ที่เป็นกระดาษ, เทป, CD, หรือแม้กระทั่งกรอบรูป ผมจำได้ว่าวันหนึ่งเขาไปบ้านย่าแล้วเขาเห็นกรอบรูปของย่า เขาก็เลยหยิบมันลงมาแล้วก็พยายามใช้นิ้วสไลด์เพื่อที่จะดูรูปต่อไปเพราะเขาเข้าใจว่ามันคือ iPad

เรื่องราวที่เล่าให้ฟังก็เพื่อที่จะสื่อให้เห็นว่าได้เด็กยุคใหม่หลายอย่างจะเปลี่ยนแปลงไป ต่อไปเราคงไม่ต้องสอนให้เขาใช้คอมพิวเตอร์แบบเดิมๆ ไม่ต้องสอนเขาใช้ เมาส์ สอนการใช้คีย์บอร์ด อย่าว่าแต่เด็กในยุคใหม่เลยแม้แต่ตัวผมเองการพิมพ์เอกสารต่างๆผมก็เขียนน้อยลง รวมถึงเบทความที่ผมเขียนอยู่นี้ผมก็ใช้ Google doc พิมพ์ด้วยเสียงแล้วค่อยกลับมาปรับเอกสารอีกทีนึง ทุกวันนี้ผมใช้กระดาษน้อยมากแล้วก็พยายามที่จะใช้เงินสดให้น้อย ลงเน้นมาใช้ mobile payment มาใช้บัตรเครดิต การสั่งของก็ผ่านออนไลน์ ผมคิดว่าโลกมันกำลังเปลี่ยนไปมาก และอนาคตใหม่ของโลกดิจิทัลมาถึงเรียบร้อยแล้ว (The Future is now)

Screenshot 2018-01-15 08.24.26

โลกมันกำลังเปลี่ยนไปมาก สิ่งที่เราจะเห็นในอนาคตสำหรับเด็กยุคนี้อาจมีหลายอย่างอาทิเช่น

  • เราคงเห็นรถยนต์ทิ้ไร้คนขับ คำถามก็คือว่าแล้วเด็กจะต้องเรียนขับรถไหมหรือจะต้องซื้อรถไหม
  • เราคงเห็นการสั่งงานด้วยเสียงกับอุปกรณ์ต่างๆมากมาย คำถามก็คือว่าแล้วเด็กจะต้องหัดใช้ Keyboard ต้องหัดเขียนหนังสือหรือเรียนวิชาคัดไทยแบบเดิมเพื่อให้ลายมือสวยๆไหม
  • เราคงเห็นระบบแปลภาษาอัตโนมัติ คำถามก็คือว่าแล้วเด็กจะต้องเรียนภาษาต่างชาติในรูปแบบเดิมหรอ
  • เราอาจเห็นสังคมไร้เงินสด คำถามก็คือว่าแล้วเด็กจะต้องเข้าใจธุรกรรมการเงินด้วยวิธีเดิมๆอยู่หรอ
  • เราอาจเห็นระบบอัจฉริยะเข้ามาทำงานแทนที่คนต่างๆอย่างมากมาย คำถามก็คือว่าแล้วเด็กจะไปประกอบอาชีพแบบเดิมๆได้หรอ

ผมว่าโลกกำลังเปลี่ยนไปมาก ทักษะของเด็กที่ต้องการเรียนรู้สำหรับการทำงานและการดำรงชีวิตในอนาคตก็กำลังเปลี่ยนไป แต่สิ่งที่ผมเห็นในบ้านเราก็คือวิธีคิดแบบเดิมๆ เรายังสอนให้ท่องจำ เรียนรู้แบบเดิมๆ ผู้ใหญ่บางครั้งก็กลัวว่าเทคโนโลยีจะเข้ามาแทนที่มนุษย์ แล้วก็ใช้วิธีสอนแบบเดิมๆด้วยความกลัวเทคโนโลยี ทั้งๆที่วันนี้เทคโนโลยีบางอย่างอาจฉลาดกว่าผู้สอน และอาจเปลี่ยนวิชาเดิมๆที่ต้องเรียน แต่เราก็มักจะบอกว่าเด็กต้องมีพื้นฐานบางอย่างแบบเดิมๆ ทั้งๆที่วันนี้เราควรจะต้องสอนการเรียนรู้โดยนำเทคโนโลยีเข้ามาใช้ สอนวิธีคิดแบบใหม่ๆ สอนการตั้งคำถาม และผู้ใหญ่ก็ต้องพร้อมรองรับกับการเปลี่ยนแปลง

การศึกษาบ้านเราในวันนี้ ถูกกำหนดโดยคนในยุค Analog แม้จะโชคดีอยู่บ้างที่มีผู้สอนบางกลุ่มเป็นคนในกลุ่ม Digital Immigrant แต่เรากำลังสอนคนในยุค Digital Native ถ้าเรายังไม่เปลี่ยนแปลงต่อไปประเทศเราคงแข่งขันลำบาก คงอาจต้องถึง้วลาที่เราจะวางนโยบายการศึกษาโดยวิธีคิดแบบ Digital Native  ปรับทักษะในหลายๆวิชา และอาจต้องถึงเวลาปฎิรูปการศึกษาครั้งใหญ่โดยมองตั้งแต่ระดับอนุบาล ถ้ากล้าที่จะคิดนอกกรอบอาจต้องเริ่มต้นด้วยกล้าที่จะลดเอกสารและหนังสือเรียนจำนวนมากออกไป แล้วหันมาใช้ในรูปดิจิทัลแทน ผมว่าเราก็อาจเริ่มเห็นการเปลี่ยนแปลงบ้างไม่มากก็น้อย ครับปัญหาเรื่องของเทคโนโลยีเข้ามาแทนที่คนที่กลัวไม่ใช่เด็กรุ่นนี้ที่จะโตขึ้นไปใช้หรอกครับ แต่คนกลัวก็คือคนสอนคนกำหนดนโยบายเขากลัวเทคโนโลยีจะมาแย่งงานเขาเห็นพวกเขาหมดความสำคัญไป

ธนชาติ นุ่มนนท์

IMC Institute

Cloud Expo Asia 2017 กับความก้าวหน้าการใช้ Cloud ของสิงคโปร์

Screenshot 2017-10-19 21.42.20

ผมไปงาน  Cloud Expo Asia ติดต่อกันมา 5 ปี และปีนี้ก็ไปอีกครั้งในช่วงสัปดาห์ที่ผ่านมา (11-12 ตุลาคม) งานนี้เขาจัดใหญ่ขึ้นเรื่อยๆจากเดิมที่เคยจัดที่ SunTec ก็ย้ายมาจัดในสถานที่ใหญ่ขึ้นตรง Marina Bay Sands และก็มีงานที่จัดร่วมกันหลายๆงานอาทิเช่น Data Center World, Big Data World, และ Smart IoT Singapore พร้อมกับมีห้องสัมมนาหลายๆด้านกว่า 300 หัวข้ออาทิเช่น

  • Cloud Expo Asia Keynote Theatre
  • DevOps, Containers, Open Cloud and Software Architecture Theatre
  • Infrastructure, Storage and Virtualisation & Agile Networks Theatre
  • Multi-Cloud Strategies & Managed Services Theatre
  • Cloud Innovations & Cloud Service Providers Theatre
  • Fintech, Finance & Banking Technology Theatre

รวมถึงห้องสัมมนาของงานที่จัดร่วมคือ

  • Big Data and Analytics Theatre
  • Big Data Open Air Theatre
  • The Internet of Things Theatre
  • Data Centre World Keynote Theatre
  • Critical Equipment and Facilities Management
  • Energy Efficiency, Cost Management, DCIM & Design and Build Theatre

NNM_3488

งาน Cloud Expo Asia ครั้งนี้ก็มีจัดแสดงโซลูชั่นด้าน Cloud Computing, Big Data และ Data Center จาก Sponsor จำนวนมากอาทิเช่น Google Cloud, Oracle, Fujitsu, Huawei, SAP, Cloudera, Hortonworks โดยมีผู้ร่วมออกบูธมากกว่า 300 รายและมีคนเข้าชมในช่วงสองวันของการจัดงานหลายพันคน และทาง  IMC Institute ก็พาผู้เข้าอบรมในหลักสูตร Cloud Computing for Senior Management เข้าไปร่วมดูงาน

สิ่งหนึ่งที่เห็นถึงการเปลี่ยนแปลงของงานนี้คือ Cloud Adoption ในสิงคโปร์ค่อนข้างจะอยู่ในขั้นก้าวหน้า การถกเถียงเรื่องว่าจะใช้ Cloud หรือไม่นั้นคงไม่ใช่เป็นประเด็นที่สำคัญ เขาสามารถที่จะดึง Cloud Provider รายใหญ่ๆหลายรายมาลงทุนในประเทศเนื่องจากตลาดที่ใหญ่พอ และกฎระเบียบต่างๆของประเทศเขาก็เร่งปรับเปลี่ยนให้สอดคล้องกับการเปลี่ยนแปลงเทคโนโลยี นอกจากนี้ก็ยังเห็นผู้ให้บริการ Cloud หลายๆที่เป็นบริษัทในประเทศเขาเอง เพราะรัฐบาลก็มีนโยบายการส่งเสริมให้ใช้และสร้างเทคโนโลยีด้าน Cloud Computing

งานนี้ถือว่าเป็นงานระดับเอเซียที่เราเห็นผู้คนจากหลายๆประเทศเข้ามาชมงานและฟังสัมมนา สิ่งหนึ่งที่น่าชื่นชมคือห้องสัมมนาสิบกว่าห้องนั้นคนร่วมงานต้องแย่งกันเข้าคิวเพื่อที่จะรอฟังสัมมนาหัวข้อถัดไป ซึ่งส่วนใหญ่จะเต็มทุกห้อง และหัวข้อในการสัมมนาจำนวนอยู่ในขั้น Advance มากกว่าจะพูดถึงขั้นพื้นฐานที่มาแนะนำ Cloud Computing หรือ Big Data ทำให้ผมตั้งขอสังเกตผู้ใช้ของเขาเองซึ่งอาจเป็นคนไอทีหรือ End-user ก็มีความเข้าใจและคุ้นเคยกับการใช้เทคโนโลยีใหม่ๆเหล่านั้นเป็นอย่างดี และพวกเขาก็กระตือรือล้นที่จะทำความเข้าใจกับเทคโนโลยีต่างๆจากการฟังสัมมนาและชม Exhibition

สุดท้ายสิ่งที่เห็นเป็นการเปลี่ยนแปลงมากก็คือ Theme ของงานเอง ที่แต่ก่อนอาจจะเน้นเรื่องของการแนะนำการใช้ Cloud Technology พูดถึง Cloud Governance หรือ  Cloud Security หรือปีที่ผ่านมาก็อาจเน้นเรื่องของการนำมาประยุกต์ใช้กับ Big Data แต่ Theme ในปีนี้คือการเน้น Cloud Platform มาทำเรื่องของ Artificial Intelligence หรือ Machine Learning ซึ่งทำให้ผู้พัฒนาระบบสามารถที่พัฒนาโซลูชั่น AI ต่างๆได้อย่างรวดเร็ว และก็เห็นได้ว่า Cloud Provider ทุกรายต่างมุ่งเน้นมาทำเรื่องนี้ไม่ว่าจะเป็น Google, Oracle, Microsoft, AWS หรือ Alibaba

หากเปรียบเทียบเนื้อหาและความสนใจของคนที่มางาน Cloud Expo Asia กับงานต่างๆที่จัดอยู่ในบ้านเรา ก็คงจะเห็นว่าเรายังห่างไกลกับเขาอีกมาก ถ้าจะแข่งได้คงไม่ใช่ที่จะไปจัดงานแข่ง แต่ต้องเน้นสร้างคนให้มีคุณภาพเร่งพัฒนาเทคโนโลยี งานต่างๆเป็นแค่สีสันที่ Vendor อาจเอาโซลูชั่นและสินค้าใหม่ๆมาแสดง แต่หากผู้ที่เข้ามาร่วมงานขาดความรู้พื้นฐานและประสบการณ์การใช้เทคโนโลยีใหม่ๆเหล่า เราก็คงเป็นได้แค่คนมาชมงานกับเนื้อหาง่ายๆที่ไม่ได้สร้างศักยภาพการแข่งขันใดๆของประเทศเรา

ธนชาติ นุ่มมนท์

IMC Institute